Mostrar el registro sencillo del ítem

dc.contributor.author
Takemura, Hiromasa  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Wandell, Brian A.  
dc.contributor.author
Pestilli, Franco  
dc.date.available
2017-09-18T14:58:59Z  
dc.date.issued
2016-02  
dc.identifier.citation
Takemura, Hiromasa; Caiafa, César Federico; Wandell, Brian A.; Pestilli, Franco; Ensemble tractography; Public Library of Science; Plos Computational Biology; 12; 2; 2-2016; 1-22; e1004692  
dc.identifier.issn
1553-734X  
dc.identifier.uri
http://hdl.handle.net/11336/24450  
dc.description.abstract
Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Tractography  
dc.subject
Human Connectome  
dc.subject
Magnetic Resonance  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Ensemble tractography  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-01T18:27:19Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
1-22; e1004692  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; Japón  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Wandell, Brian A.. University of Stanford; Estados Unidos  
dc.description.fil
Fil: Pestilli, Franco. Indiana University; Estados Unidos  
dc.journal.title
Plos Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004692  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1004692