Mostrar el registro sencillo del ítem

dc.contributor.author
Torres Peralta, Ticiano Jorge  
dc.contributor.author
Molina, Maria Graciela  
dc.contributor.author
Asorey, Hernán Gonzalo  
dc.contributor.author
Sidelnik, Iván Pedro  
dc.contributor.author
Rubio Montero, Antonio Juan  
dc.contributor.author
Dasso, Sergio Ricardo  
dc.contributor.author
Mayo Garcia, Rafael  
dc.contributor.author
Taboada Nuñez, Alvaro  
dc.contributor.author
Otiniano, Luis  
dc.date.available
2024-09-18T11:08:02Z  
dc.date.issued
2024-08  
dc.identifier.citation
Torres Peralta, Ticiano Jorge; Molina, Maria Graciela; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; Rubio Montero, Antonio Juan; et al.; Enhanced Particle Classification in Water Cherenkov Detectors Using Machine Learning: Modeling and Validation with Monte Carlo Simulation Datasets; MDPI; Atmosphere; 15; 9; 8-2024; 1-21  
dc.identifier.issn
2073-4433  
dc.identifier.uri
http://hdl.handle.net/11336/244501  
dc.description.abstract
The Latin American Giant Observatory (LAGO) is a ground-based extended cosmic rays observatory designed to study transient astrophysical events, the role of the atmosphere on the formation of secondary particles, and space-weather-related phenomena. With the use of a network of Water Cherenkov Detectors (WCDs), LAGO measures the secondary particle flux, a consequence of the interaction of astroparticles impinging on the atmosphere of Earth. This flux can be grouped into three distinct basic constituents: electromagnetic, muonic, and hadronic components. When a particle enters a WCD, it generates a measurable signal characterized by unique features correlating to the particle’s type and the detector’s specific response. The resulting charge histograms from these signals provide valuable insights into the flux of primary astroparticles and their key characteristics. However, these data are insufficient to effectively distinguish between the contributions of different secondary particles. In this work, we extend our previous research by using detailed simulations of the expected atmospheric response to the primary flux and the corresponding response of our WCDs to atmospheric radiation. This dataset, which was created through the combination of the outputs of the ARTI and Meiga simulation frameworks, simulated the expected WCD signals produced by the flux of secondary particles during one day at the LAGO site in Bariloche, Argentina, situated at 865 m above sea level. This was achieved by analyzing the real-time magnetospheric and local atmospheric conditions for February and March of 2012, where the resultant atmospheric secondary-particle flux was integrated into a specific Meiga application featuring a comprehensive Geant4 model of the WCD at this LAGO location. The final output was modified for effective integration into our machine-learning pipeline. With an implementation of Ordering Points to Identify the Clustering Structure (OPTICS), a density-based clustering algorithm used to identify patterns in data collected by a single WCD, we have further refined our approach to implement a method that categorizes particle groups using advanced unsupervised machine learning techniques. This allowed for the differentiation among particle types and utilized the detector’s nuanced response to each, thus pinpointing the principal contributors within each group. Our analysis has demonstrated that applying our enhanced methodology can accurately identify the originating particles with a high degree of confidence on a single-pulse basis, highlighting its precision and reliability. These promising results suggest the feasibility of future implementations of machine-leaning-based models throughout LAGO’s distributed detection network and other astroparticle observatories for semi-automated, onboard and real-time data analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
machine learning  
dc.subject
water Cherenkov detector  
dc.subject
LAGO  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Enhanced Particle Classification in Water Cherenkov Detectors Using Machine Learning: Modeling and Validation with Monte Carlo Simulation Datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-09T10:52:19Z  
dc.journal.volume
15  
dc.journal.number
9  
dc.journal.pagination
1-21  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Torres Peralta, Ticiano Jorge. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Molina, Maria Graciela. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Asorey, Hernán Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Sidelnik, Iván Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). División Neutrones y Reactores; Argentina  
dc.description.fil
Fil: Rubio Montero, Antonio Juan. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (ciemat);  
dc.description.fil
Fil: Dasso, Sergio Ricardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Mayo Garcia, Rafael. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (ciemat);  
dc.description.fil
Fil: Taboada Nuñez, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina  
dc.description.fil
Fil: Otiniano, Luis. No especifíca;  
dc.journal.title
Atmosphere  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4433/15/9/1039  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/atmos15091039