Mostrar el registro sencillo del ítem

dc.contributor.author
Wierna, Pablo  
dc.contributor.author
Yago, Daniel  
dc.contributor.author
Lloberas Valls, Oriol  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Oliver, Javier  
dc.date.available
2024-09-17T11:56:46Z  
dc.date.issued
2024-04  
dc.identifier.citation
Wierna, Pablo; Yago, Daniel; Lloberas Valls, Oriol; Huespe, Alfredo Edmundo; Oliver, Javier; On the Efficient and Accurate Non-linear Computational Modeling of Multilayered Bending Plates. State of the Art and a Novel Proposal: The $$2 ext {D}+$$ Multiscale Approach; Springer; Archives Of Computational Methods In Engineering; 4-2024; 1-56  
dc.identifier.issn
1134-3060  
dc.identifier.uri
http://hdl.handle.net/11336/244413  
dc.description.abstract
After conducting a comprehensive historical review of presently established methods for computational modeling of multilayered bending plates, the present work introduces a novel 2D multiscale strategy, termed the 2D+ approach. The proposed approach is based on the computational homogenization formalism and is envisaged to serve as an appealing alternative to current methodologies for modeling multilayered plates in bending-dominated situations. Such structural elements involve modern and relevant materials, such as laminated composites characterized by the heterogeneous distribution of low-aspectratio layers showing substantial non-linear mechanical behavior across their thickness. Within this proposed approach, the 2D plate mid-plane constitutes the macroscopic scale, while a 1D filament-like RepresentativeVolume Element(RVE), orthogonal to the platemid-plane and spanning the plate thickness,represents themesoscopic scale. Such RVE, in turn, is capturing the non-linear mechanical behavior throughout the plate thickness at each integration point of the 2D plate-midplane finite element mesh. The chosen kinematics and discretization at the considered scales are particularly selected to (1) effectively capture relevant aspects of non-linear mechanical behavior in multilayered plates under bending-dominated scenarios, (2) achieve affordable computational times (computational efficiency), and (3) provide accurate stress distributions compared to the corresponding high-fidelity 3D simulations (computational accuracy).The proposed strategy aligns with the standard, first-order, hierarchical multiscale setting, involving the linearization of the macro-scale displacement field along the thickness. It employs an additional fluctuating displacement field in the RVE to capture higher-order behavior, which is computed through a local 1D finite element solution of a Boundary Value Problem (BVP) at the RVE. A notable feature of the presented 2D+ approach is the application of the Hill–Mandel principle, grounded in the well-established physical assumption imposing mechanical energy equivalence in the macro and meso scales. Thislinks the 2D macroscopic plate and the set of 1D mesoscopic filaments, in a weakly-coupled manner, and yields remarkable computational savings in comparison with standard 3D modeling. Additionally, solving the resulting RVE problem in terms of the fluctuating displacement field allows the enforcement of an additional condition: fulfillment of linear momentum balance (equilibrium equations). This results in a physically meaningful 2D-like computational setting, in the considered structural object (multilayered plates in bending-dominated situations), which provides accurate stress distributions, typical of full 3Dmodels, at the computational cost of 2D models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTILAYERED BENDING PLATES  
dc.subject
COMPOSITE PLATES  
dc.subject
2D+ MULTISCALE MODELING  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
On the Efficient and Accurate Non-linear Computational Modeling of Multilayered Bending Plates. State of the Art and a Novel Proposal: The $$2 ext {D}+$$ Multiscale Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-10T12:56:58Z  
dc.journal.pagination
1-56  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Wierna, Pablo. Centre Internacional de Mètodes Numèrics en Enginyeria; España  
dc.description.fil
Fil: Yago, Daniel. Centre Internacional de Mètodes Numèrics en Enginyeria; España. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Lloberas Valls, Oriol. Universidad Politécnica de Catalunya; España. Centre Internacional de Mètodes Numèrics en Enginyeria; España  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Oliver, Javier. Centre Internacional de Mètodes Numèrics en Enginyeria; España. Universidad Politécnica de Catalunya; España  
dc.journal.title
Archives Of Computational Methods In Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11831-023-10049-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11831-023-10049-4