Mostrar el registro sencillo del ítem

dc.contributor.author
Gonzalez, Mailen  
dc.contributor.author
Fuertes García, Jose M.  
dc.contributor.author
Lucena López, Manuel J.  
dc.contributor.author
Abdala, Ruben  
dc.contributor.author
Massa, José María  
dc.date.available
2024-09-17T11:01:29Z  
dc.date.issued
2024-06  
dc.identifier.citation
Gonzalez, Mailen; Fuertes García, Jose M.; Lucena López, Manuel J.; Abdala, Ruben; Massa, José María; Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models; The Science and Information Organization; International Journal of Advanced Computer Science and Applications; 15; 6; 6-2024; 554-1560  
dc.identifier.issn
2158-107X  
dc.identifier.uri
http://hdl.handle.net/11336/244402  
dc.description.abstract
The assessment of bone trabecular quality degrada-tion is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
The Science and Information Organization  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
OSTEOPOROSIS  
dc.subject
DUAL X RAY ABSORPTIOMETRY  
dc.subject
TRABECULAR BONE SCORE  
dc.subject
CONVOLUTIONAL NEURAL NETWORK  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-26T14:56:24Z  
dc.identifier.eissn
2156-5570  
dc.journal.volume
15  
dc.journal.number
6  
dc.journal.pagination
554-1560  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina  
dc.description.fil
Fil: Fuertes García, Jose M.. Universidad de Jaén; España  
dc.description.fil
Fil: Lucena López, Manuel J.. Universidad de Jaén; España  
dc.description.fil
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);  
dc.description.fil
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina  
dc.journal.title
International Journal of Advanced Computer Science and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://thesai.org/Publications/ViewPaper?Volume=15&Issue=6&Code=ijacsa&SerialNo=154  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.14569/IJACSA.2024.01506154