Mostrar el registro sencillo del ítem

dc.contributor.author
Bertran Llorens, Salvador  
dc.contributor.author
Zhou, Wen  
dc.contributor.author
Palazzolo, Martín Alejandro  
dc.contributor.author
Colpa, Dana l.  
dc.contributor.author
Euverink, Gert Jan W.  
dc.contributor.author
Krooneman, Janneke  
dc.contributor.author
Deuss, Peter J.  
dc.date.available
2024-09-17T10:32:55Z  
dc.date.issued
2024-05  
dc.identifier.citation
Bertran Llorens, Salvador; Zhou, Wen; Palazzolo, Martín Alejandro; Colpa, Dana l.; Euverink, Gert Jan W.; et al.; ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics; American Chemical Society; ACS Sustainable Chemistry & Engineering; 12; 20; 5-2024; 7724-7738  
dc.identifier.issn
2168-0485  
dc.identifier.uri
http://hdl.handle.net/11336/244392  
dc.description.abstract
Lignocellulose biorefining is a promising technology for the sustainable production of chemicals and biopolymers. Usually, when one component is focused on, the chemical nature and yield of the others are compromised. Thus, one of the bottlenecks in biomass biorefining is harnessing the maximum value from all of the lignocellulosic components. Here, we describe a mild stepwise process in a flow-through setup leading to separate flow-out streams containing cinnamic acid derivatives, glucose, xylose, and lignin as the main components from different herbaceous sources. The proposed process shows that minimal degradation of the individual components and conservation of their natural structure are possible. Under optimized conditions, the following fractions are produced from wheat straw based on their respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51% monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation of cellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the lignin aryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, the crude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-rich fraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercial pure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of the principal components of herbaceous biomasses.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LIGNOCELLULOSE FRACTIONATION  
dc.subject
PHB  
dc.subject
LIGNIN  
dc.subject
FERULIC ACID  
dc.subject
DILUTE ACID PRETREATMENT  
dc.subject
ALKALINE PRETREATMENT  
dc.subject
ENZYMATIC SACCHARIFICATION  
dc.subject
BIOPLASTIC  
dc.subject.classification
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-26T10:52:55Z  
dc.identifier.eissn
2168-0485  
dc.journal.volume
12  
dc.journal.number
20  
dc.journal.pagination
7724-7738  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bertran Llorens, Salvador. University of Groningen; Países Bajos  
dc.description.fil
Fil: Zhou, Wen. University of Groningen; Países Bajos  
dc.description.fil
Fil: Palazzolo, Martín Alejandro. University of Groningen; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina  
dc.description.fil
Fil: Colpa, Dana l.. University of Groningen; Países Bajos  
dc.description.fil
Fil: Euverink, Gert Jan W.. University of Groningen; Países Bajos  
dc.description.fil
Fil: Krooneman, Janneke. University of Groningen; Países Bajos  
dc.description.fil
Fil: Deuss, Peter J.. University of Groningen; Países Bajos  
dc.journal.title
ACS Sustainable Chemistry & Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.3c08414  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acssuschemeng.3c08414