Mostrar el registro sencillo del ítem

dc.contributor.author
Coral, Diego Fernando  
dc.contributor.author
Mendoza Zélis, Pedro  
dc.contributor.author
de Sousa, María Elisa  
dc.contributor.author
Muraca, Diego  
dc.contributor.author
Lassalle, Verónica Leticia  
dc.contributor.author
Nicolás, Paula  
dc.contributor.author
Ferreira, María Luján  
dc.contributor.author
Fernández van Raap, Marcela Beatriz  
dc.date.available
2017-09-15T20:29:16Z  
dc.date.issued
2014-01-23  
dc.identifier.citation
Coral, Diego Fernando; Mendoza Zélis, Pedro; de Sousa, María Elisa; Muraca, Diego; Lassalle, Verónica Leticia; et al.; Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments; American Institute of Physics; Journal of Applied Physics; 115; 23-1-2014; 43907-43917  
dc.identifier.issn
0021-8979  
dc.identifier.uri
http://hdl.handle.net/11336/24429  
dc.description.abstract
In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (∼10−10 s and 10−4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i.e., improving the heating efficiency of the nanoparticles for magnetic fluid hyperthermia.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Colloidal Systems  
dc.subject
Nanoparticles  
dc.subject
Suspensions  
dc.subject
Acids  
dc.subject
Hydrodinamics  
dc.subject
Polymers  
dc.subject
Transmition Electron Microscopy  
dc.subject
Magnetic Nanoparticles  
dc.subject
Magnetic Anisotropy  
dc.subject
Relaxation Times  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T20:15:39Z  
dc.journal.volume
115  
dc.journal.pagination
43907-43917  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Coral, Diego Fernando. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: de Sousa, María Elisa. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Muraca, Diego. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Nicolás, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Ferreira, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Fernández van Raap, Marcela Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
Journal of Applied Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4862647  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.4862647