Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Movement decoding using spatio-spectral features of cortical and subcortical local field potentials

Peterson, VictoriaIcon ; Merk, Timon; Bush, AlanIcon ; Nikulin, Vadim; Kühn, Andrea A.; Neumann, Wolf Julian; Richardson, R. Mark
Fecha de publicación: 01/2023
Editorial: Academic Press Inc Elsevier Science
Revista: Experimental Neurology
ISSN: 0014-4886
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The first commercially sensing enabled deep brain stimulation (DBS) devices for the treatment of movement disorders have recently become available. In the future, such devices could leverage machine learning based brain signal decoding strategies to individualize and adapt therapy in real-time. As multi-channel recordings become available, spatial information may provide an additional advantage for informing machine learning models. To investigate this concept, we compared decoding performances from single channels vs. spatial filtering techniques using intracerebral multitarget electrophysiology in Parkinson´s disease patients undergoing DBS implantation. We investigated the feasibility of spatial filtering in invasive neurophysiology and the putative utility of combined cortical ECoG and subthalamic local field potential signals for decoding grip-force, a well-defined and continuous motor readout. We found that adding spatial information to the model can improve decoding (6% gain in decoding), but the spatial patterns and additional benefit was highly individual. Beyond decoding performance results, spatial filters and patterns can be used to obtain meaningful neurophysiological information about the brain networks involved in target behavior. Our results highlight the importance of individualized approaches for brain signal decoding, for which multielectrode recordings and spatial filtering can improve precision medicine approaches for clinical brain computer interfaces.
Palabras clave: ADAPTIVE DEEP BRAIN STIMULATION , INVASIVE NEURAL OSCILLATION , MACHINE LEARNING , MOVEMENT DECODING , MULTICHANNEL RECORDINGS , SPATIAL FILTERS
Ver el registro completo
 
Archivos asociados
Tamaño: 5.376Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243878
DOI: http://dx.doi.org/10.1016/j.expneurol.2022.114261
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Peterson, Victoria; Merk, Timon; Bush, Alan; Nikulin, Vadim; Kühn, Andrea A.; et al.; Movement decoding using spatio-spectral features of cortical and subcortical local field potentials; Academic Press Inc Elsevier Science; Experimental Neurology; 359; 1-2023; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES