Mostrar el registro sencillo del ítem

dc.contributor.author
Andreou, Andreas G.  
dc.contributor.author
Figliolia, Tomas  
dc.contributor.author
Kayode, Sanni  
dc.contributor.author
Murray, Thomas S  
dc.contributor.author
Tognetti, Gaspar  
dc.contributor.author
Mendat, Daniel R.  
dc.contributor.author
Molin, Jamal L.  
dc.contributor.author
Villemur, Martin  
dc.contributor.author
Pouliquen, Philippe O.  
dc.contributor.author
Julian, Pedro Marcelo  
dc.contributor.author
Etienne Cummings, Ralph  
dc.contributor.author
Doxas, Isidoros  
dc.date.available
2024-09-09T13:41:50Z  
dc.date.issued
2024  
dc.identifier.citation
Neuromorphic Chiplet Architecture for Wide Area Motion Imagery Processing; 2024 Argentine Conference on Electronics (CAE); Bahia Blanca; Argentina; 2024; 160-171  
dc.identifier.isbn
979-8-3503-0509-8  
dc.identifier.uri
http://hdl.handle.net/11336/243837  
dc.description.abstract
We present the system architecture for real-time processing of data that originates in large format tiled imaging arrays used in wide area motion imagery ubiquitous surveillance. High performance and high throughput is achieved through approximate computing and fixed point variable precision (6 bits to 18 bits) arithmetic. The architecture implements a variety of processing algorithms in what we consider today as Third Wave AI and Machine Intelligence ranging from convolutional networks (CNNs) to linear and non-linear morphological processing, probabilistic inference using exact and approximate Bayesian methods and Deep Neural Networks based classification. The processing pipeline is implemented entirely using event based neuromorphic and stochastic computational primitives. An emulation of the system architecture demonstrated processing in real-time 160 x 120 raw pixel data running on a reconfigurable computing platform (5 Xilinx Kintex-7 FPGAs). The reconfigurable computing implementation was developed to emulate the computational structures for a 2.5D System chiplet design, that was fabricated in the 55nm GF CMOS technology. To optimize for energy efficiency of a mixed level system, a general energy aware methodology is applied through the design process at all levels from algorithms and architecture all the way down to technology and devices, while at the same time keeping the operational requirements and specifications for the task at focus.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Chiplets  
dc.subject
2.5D architecture  
dc.subject
neuromorphic processing  
dc.subject
mixed signal design  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Neuromorphic Chiplet Architecture for Wide Area Motion Imagery Processing  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-08-07T09:30:32Z  
dc.journal.pagination
160-171  
dc.journal.pais
Argentina  
dc.journal.ciudad
New Jersey  
dc.description.fil
Fil: Andreou, Andreas G.. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Figliolia, Tomas. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Kayode, Sanni. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Murray, Thomas S. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Tognetti, Gaspar. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Mendat, Daniel R.. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Molin, Jamal L.. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Villemur, Martin. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pouliquen, Philippe O.. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina. Comisión Nacional de Investigación Científica y Tecnológica; Chile  
dc.description.fil
Fil: Etienne Cummings, Ralph. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Doxas, Isidoros. University Johns Hopkins; Estados Unidos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10487119  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/CAE59785.2024.10487119  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
2024 Argentine Conference on Electronics (CAE)  
dc.date.evento
2024-03-07  
dc.description.ciudadEvento
Bahia Blanca  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
2024 Argentine Conference on Electronics (CAE)  
dc.date.eventoHasta
2024-03-08  
dc.type
Congreso