Mostrar el registro sencillo del ítem
dc.contributor.author
Andreou, Andreas G.
dc.contributor.author
Figliolia, Tomas
dc.contributor.author
Kayode, Sanni
dc.contributor.author
Murray, Thomas S
dc.contributor.author
Tognetti, Gaspar
dc.contributor.author
Mendat, Daniel R.
dc.contributor.author
Molin, Jamal L.
dc.contributor.author
Villemur, Martin
dc.contributor.author
Pouliquen, Philippe O.
dc.contributor.author
Julian, Pedro Marcelo
dc.contributor.author
Etienne Cummings, Ralph
dc.contributor.author
Doxas, Isidoros
dc.date.available
2024-09-09T13:41:50Z
dc.date.issued
2024
dc.identifier.citation
Neuromorphic Chiplet Architecture for Wide Area Motion Imagery Processing; 2024 Argentine Conference on Electronics (CAE); Bahia Blanca; Argentina; 2024; 160-171
dc.identifier.isbn
979-8-3503-0509-8
dc.identifier.uri
http://hdl.handle.net/11336/243837
dc.description.abstract
We present the system architecture for real-time processing of data that originates in large format tiled imaging arrays used in wide area motion imagery ubiquitous surveillance. High performance and high throughput is achieved through approximate computing and fixed point variable precision (6 bits to 18 bits) arithmetic. The architecture implements a variety of processing algorithms in what we consider today as Third Wave AI and Machine Intelligence ranging from convolutional networks (CNNs) to linear and non-linear morphological processing, probabilistic inference using exact and approximate Bayesian methods and Deep Neural Networks based classification. The processing pipeline is implemented entirely using event based neuromorphic and stochastic computational primitives. An emulation of the system architecture demonstrated processing in real-time 160 x 120 raw pixel data running on a reconfigurable computing platform (5 Xilinx Kintex-7 FPGAs). The reconfigurable computing implementation was developed to emulate the computational structures for a 2.5D System chiplet design, that was fabricated in the 55nm GF CMOS technology. To optimize for energy efficiency of a mixed level system, a general energy aware methodology is applied through the design process at all levels from algorithms and architecture all the way down to technology and devices, while at the same time keeping the operational requirements and specifications for the task at focus.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Chiplets
dc.subject
2.5D architecture
dc.subject
neuromorphic processing
dc.subject
mixed signal design
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Neuromorphic Chiplet Architecture for Wide Area Motion Imagery Processing
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-08-07T09:30:32Z
dc.journal.pagination
160-171
dc.journal.pais
Argentina
dc.journal.ciudad
New Jersey
dc.description.fil
Fil: Andreou, Andreas G.. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Figliolia, Tomas. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Kayode, Sanni. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Murray, Thomas S. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Tognetti, Gaspar. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Mendat, Daniel R.. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Molin, Jamal L.. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Villemur, Martin. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pouliquen, Philippe O.. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Julian, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina. Comisión Nacional de Investigación Científica y Tecnológica; Chile
dc.description.fil
Fil: Etienne Cummings, Ralph. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Doxas, Isidoros. University Johns Hopkins; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10487119
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/CAE59785.2024.10487119
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
2024 Argentine Conference on Electronics (CAE)
dc.date.evento
2024-03-07
dc.description.ciudadEvento
Bahia Blanca
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
2024 Argentine Conference on Electronics (CAE)
dc.date.eventoHasta
2024-03-08
dc.type
Congreso
Archivos asociados