Mostrar el registro sencillo del ítem

dc.contributor.author
Gálvez, Nélida Beatriz  
dc.contributor.author
Cousseau, Juan Edmundo  
dc.contributor.author
Pasciaroni, Jose Luis  
dc.contributor.author
Agamennoni, Osvaldo Enrique  
dc.date.available
2024-09-06T18:18:44Z  
dc.date.issued
2012-10  
dc.identifier.citation
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations; Planta Piloto de Ingeniería Química; Latin American Applied Research; 42; 4; 10-2012; 343-350  
dc.identifier.issn
0327-0793  
dc.identifier.uri
http://hdl.handle.net/11336/243724  
dc.description.abstract
The Neural Network Cell Average - Order Statistics Constant False Alarm Rate (NNCAOS CFAR) detector is presented in this work. NNCAOS CFAR is a combined detection methodology which uses the effectiveness of neural networks to search for non homogeneities like clutter banks and multiple targets within the radar return. In addition, the methodology proposed applies a convenient cell average (CA) or order statistics (OS) CFAR detector according to the context situation. Exhaustive analysis and comparisons show that NNCAOS CFAR has better performance than CA CFAR, OS CFAR and even CANN CFAR detectors (the latter, a previously proposed neural network based detector). Furthermore, it is verified that the new proposal presents a robust operation when maintaining a constant probability of false alarm under different radar return situations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Planta Piloto de Ingeniería Química  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
CFAR  
dc.subject
Neural Networks  
dc.subject
Clutter  
dc.subject
Detection  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Improved Neural Network Based CFAR for Non Homogeneus Background and Multiple Target Situations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-07T09:26:11Z  
dc.identifier.eissn
1851-8796  
dc.journal.volume
42  
dc.journal.number
4  
dc.journal.pagination
343-350  
dc.journal.pais
Argentina  
dc.journal.ciudad
Bahia Blanca  
dc.description.fil
Fil: Gálvez, Nélida Beatriz. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina  
dc.description.fil
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Pasciaroni, Jose Luis. Ministerio de Defensa. Armada Argentina. Dirección Gral. de Investigación y Desarrollo de la Ara. Servicio Analisis Operativo Armas y Guerra Electronica; Argentina  
dc.description.fil
Fil: Agamennoni, Osvaldo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.journal.title
Latin American Applied Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932012000400003