Mostrar el registro sencillo del ítem
dc.contributor.author
Auat Cheein, Fernando Alfredo
dc.contributor.author
Carelli Albarracin, Ricardo Oscar
dc.date.available
2024-09-05T12:24:27Z
dc.date.issued
2010-12
dc.identifier.citation
Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar; Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm; Molecular Diversity Preservation International; Sensors; 11; 1; 12-2010; 62-89
dc.identifier.issn
1424-8220
dc.identifier.uri
http://hdl.handle.net/11336/243645
dc.description.abstract
This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
SLAM
dc.subject
Mapping
dc.subject
Features Selection
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-02T12:17:21Z
dc.journal.volume
11
dc.journal.number
1
dc.journal.pagination
62-89
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Auat Cheein, Fernando Alfredo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Sensors
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1424-8220/11/1/62/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/s110100062
Archivos asociados