Mostrar el registro sencillo del ítem

dc.contributor.author
Auat Cheein, Fernando Alfredo  
dc.contributor.author
Carelli Albarracin, Ricardo Oscar  
dc.date.available
2024-09-05T12:24:27Z  
dc.date.issued
2010-12  
dc.identifier.citation
Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar; Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm; Molecular Diversity Preservation International; Sensors; 11; 1; 12-2010; 62-89  
dc.identifier.issn
1424-8220  
dc.identifier.uri
http://hdl.handle.net/11336/243645  
dc.description.abstract
This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
SLAM  
dc.subject
Mapping  
dc.subject
Features Selection  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-02T12:17:21Z  
dc.journal.volume
11  
dc.journal.number
1  
dc.journal.pagination
62-89  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Auat Cheein, Fernando Alfredo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Sensors  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1424-8220/11/1/62/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/s110100062