Mostrar el registro sencillo del ítem

dc.contributor.author
Chej, Lucas Gabriel  
dc.contributor.author
Monastra, Alejandro Gabriel  
dc.contributor.author
Carusela, María Florencia  
dc.date.available
2024-09-02T15:00:22Z  
dc.date.issued
2024-08  
dc.identifier.citation
Chej, Lucas Gabriel; Monastra, Alejandro Gabriel; Carusela, María Florencia; Modeling considerations about a microchannel heat sink; American Institute of Physics; Physics of Fluids; 36; 8; 8-2024; 8200501-8200510  
dc.identifier.issn
1070-6631  
dc.identifier.uri
http://hdl.handle.net/11336/243415  
dc.description.abstract
Many computational studies on hotspot microfluidic cooling devices found in the literature rely on simplified assumptions and conventions that do not capture the full complexity of the conjugate thermal problem, such as constant thermophysical fluid properties, radiation, and free air convection on the external walls. These assumptions are generally applied to typical microfluidic devices with a large number of microchannels and operating at Reynolds numbers between 100 and 1000. A one microchannel chip is a suitable starting point to analyze more systematically the implications of these assumptions, in particular at lower Reynolds numbers. Although it is a simpler system, it has been studied experimentally and numerically as a basic block of a thermal microfluidic device. In this work, we analyze the modeling of the overall heat transfer from a hotspot to a microfluidic heat sink, focusing on the effect of the different thermal transfer mechanisms (conduction, convection, and radiation), and temperature-dependent thermophysical properties of the fluid and the chip material. The study is developed as a function of the pressure difference applied to the system based on simulations performed using a finite volume method. Analyzing and comparing the different contributions to the energy losses, this work provides a critical discussion of the usually considered approximations, to make a reliable modeling of the overall thermal performance of a single rectangular straight channel embedded in a polydimethylsiloxane microfluidic chip.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
microfluidics  
dc.subject
heat transfer  
dc.subject
computational fluid dynamics  
dc.subject
energy balance  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modeling considerations about a microchannel heat sink  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-02T12:07:08Z  
dc.journal.volume
36  
dc.journal.number
8  
dc.journal.pagination
8200501-8200510  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Chej, Lucas Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Carusela, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Physics of Fluids  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/pof/article/36/8/082005/3308319/Modeling-considerations-about-a-microchannel-heat  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0218235