Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A glimpse inside materials: Polymer structure – Glass transition temperature relationship as observed by a trained artificial intelligence

Miccio, Luis AlejandroIcon ; Borredon, Claudia; Schwartz, Gustavo A.
Fecha de publicación: 03/2024
Editorial: Elsevier Science
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Artificial neural networks (ANNs), a subset of Quantitative Structure-Property Relationship (QSPR) methods, offer a promising avenue for addressing challenges in materials science. In particular, ANNs can learn intricated patterns within the experimental data, enabling them to predict properties and recognize complex relationships with remarkable accuracy. However, the opacity of ANNs, normally acting as black boxes, raises concerns about their reliability and interpretability. To enhance their transparency and to uncover the underlying relationships between chemical features and material properties, we propose a novel approach that employs Gradient-weighted Class Activation Mapping (Grad-CAM) applied to Convolutional Neural Networks (CNNs). By analyzing these attention maps, we identify the crucial chemical features influencing the prediction of a polymer property, specifically the glass transition temperature (Tg). Our methodology is validated using a dataset of atactic acrylates, allowing us to not only predict Tg values for a control group of polymers but also to quantitatively assess the impact of individual monomer structural elements on these predictions. This work proposes a step towards transparent models in materials science, contributing to a deeper understanding of the intricate relationship between chemical structures and material properties.
Palabras clave: Artificial Neural networks , Gradient-weighted Class Activation Mapping , Convolutional Neural Networks (CNNs) , glass transition temperature (Tg)
Ver el registro completo
 
Archivos asociados
Tamaño: 2.886Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243340
DOI: http://dx.doi.org/10.1016/j.commatsci.2024.112863
URL: https://www.sciencedirect.com/science/article/abs/pii/S0927025624000843
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Miccio, Luis Alejandro; Borredon, Claudia; Schwartz, Gustavo A.; A glimpse inside materials: Polymer structure – Glass transition temperature relationship as observed by a trained artificial intelligence; Elsevier Science; Computational Materials Science; 236; 3-2024; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES