Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Shifted varieties and discrete neighborhoods around varieties

Von zur Gathen, Joachim; Matera, GuillermoIcon
Fecha de publicación: 03/2022
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Journal Of Symbolic Computation
ISSN: 0747-7171
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In the area of symbolic-numerical computation within computer algebra, an interesting question is how “close” a random input is to the “critical” ones. Examples are the singular matrices in linear algebra or the polynomials with multiple roots for Newton's root-finding method. Bounds, sometimes very precise, are known for the volumes over or of such neighborhoods of the varieties of “critical” inputs; see the references below. This paper deals with the discrete version of this question: over a finite field, how many points lie in a certain type of neighborhood around a given variety? A trivial upper bound on this number is given by the product (size of the variety) ⋅ (size of a neighborhood of a point). It turns out that this bound is usually asymptotically tight, in particular for the singular matrices, polynomials with multiple roots, and pairs of non-coprime polynomials. The interesting question then is: for which varieties is this bound not asymptotically tight? We show that these are precisely those that admit a shift, that is, where one absolutely irreducible component of maximal dimension is a shift (translation by a fixed nonzero point) of another such component. Furthermore, the shift-invariant absolutely irreducible varieties are characterized as being cylinders over some base variety. Computationally, determining whether a given variety is shift-invariant turns out to be intractable, namely NP-hard even in simple cases.
Palabras clave: FINITE FIELDS , NEIGHBORHOODS AROUND VARIETIES , NEIGHBORHOODS OF VARIETIES , POLYNOMIAL SYSTEMS
Ver el registro completo
 
Archivos asociados
Tamaño: 461.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/243262
DOI: http://dx.doi.org/10.1016/j.jsc.2021.07.001
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Von zur Gathen, Joachim; Matera, Guillermo; Shifted varieties and discrete neighborhoods around varieties; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 109; 3-2022; 31-49
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES