Mostrar el registro sencillo del ítem
dc.date.available
2024-08-27T10:03:17Z
dc.identifier.citation
Breunig, Alexis; Di Giusto, Gisela; Casal, Juan José; (2024): Precision Cell Detection and Counting In Adhesion Experiments: A Deep Learning Perspective With YOLO. Annotated Dataset. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/243143
dc.identifier.uri
http://hdl.handle.net/11336/243143
dc.description.abstract
Cell adhesion is a fundamental biological process underpinning various physiological and pathological phenomena, including tissue repair and cancer metastasis. While straightforward, traditional assays for assessing cell adhesion suffer from poor reproducibility and low throughput. This study introduces a deep learning-based approach using the You Only Look Once (YOLO) convolutional neural networks to automate cell detection and counting, even in real-time, thereby improving the speed and efficiency of cell adhesion assays. Our methodology involved the analysis of AQP2-RCCD1 cell adhesion assays with the data captured and processed using the YOLO models. These models were trained on various image resolutions to assess the trade-offs between image quality and computational efficiency, significantly optimizing the detection process. Employing the YOLOv3, YOLOv5, YOLOv8, and YOLOv9 architectures, we address the challenges of variability in cell density and illumination within adhesion experiments. In commitment to open science principles, the source code, the trained models, and our real-time webcam analysis approach are shared to foster innovation and collaboration. Our findings highlight the potential of using YOLO models for efficient and accurate cell analysis, making advanced image processing accessible to a broader range of researchers.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://opendatacommons.org/licenses/by/1-0/
dc.title
Precision Cell Detection and Counting In Adhesion Experiments: A Deep Learning Perspective With YOLO. Annotated Dataset
dc.type
dataset
dc.date.updated
2024-08-27T09:57:59Z
dc.description.fil
Fil: Breunig, Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.description.fil
Fil: Di Giusto, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.description.fil
Fil: Casal, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.datacite.PublicationYear
2024
dc.datacite.Creator
Breunig, Alexis
dc.datacite.Creator
Di Giusto, Gisela
dc.datacite.Creator
Casal, Juan José
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.subject
Ciencias de la Información y Bioinformática
dc.datacite.subject
Ciencias de la Computación e Información
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS
dc.datacite.subject
Bioquímica y Biología Molecular
dc.datacite.subject
Ciencias Biológicas
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS
dc.datacite.subject
Sistemas de Automatización y Control
dc.datacite.subject
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.datacite.subject
INGENIERÍAS Y TECNOLOGÍAS
dc.datacite.date
05/10/2023-05/01/2024
dc.datacite.DateType
Creado
dc.datacite.language
eng
dc.datacite.AlternateIdentifierType
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.6084/m9.figshare.25135400
dc.datacite.version
1.0
dc.datacite.description
RCCD1 is an epithelial cell line (RRID: CVCL_E043) derived from rat renal cortical collecting ducts (CCD). These cells maintain the primary characteristics of the parental CCD from which they originate and show high transepithelial resistance (Blot-Chabaud et al., 1996). We employed AQP2-RCCD1 cells that constitutively express AQP2 protein at the apical membrane after RCCD1 being stably transfected with cDNA coding for rat AQP2 (Ford et al., 2005). Cells were passaged every 7 days and seeded at 8000 cells/cm2. AQP2-RCCD1 cells were kept at 37°C in a controlled atmosphere with 5% CO2 in a modified-DMEM media: 1:1 v/v DMEM/Ham's F12, 14 mM NaHCO3, 2 mM glutamine, 50 nM dexamethasone, 30 nM sodium selenite, 5 g/ml insulin, 5 g/ml transferrin, 10 ng/ml epidermal growth factor, 50 nM triiodothyronine, 100 U/ml penicillin-streptomycin, 20 mM HEPES, 2% fetal bovine serum and Geneticin (G418, 200 µg/ml, Thermo Fisher Scientific Cat# 11811023). Cell adhesion assay: AQP2-RCCD1 cells were trypsinized and resuspended in a DMEM/F12 serum-free medium. Subsequently, approximately 5×104 cells were added per well to a 24-well culture plate and allowed to adhere at 37 °C for 30 min. After incubation, non-adherent cells were removed, and each well was washed gently with cold PBS. Cells were fixed with 4% PFA and photographed in six random fields for each well using a Microsoft Lifecam VX-6000 connected to an Olympus inverted microscope IMT-2 with a 4x objective lens.
dc.datacite.description
YOLO annotation Darknet Format This format contains one text file per image (containing the annotations and a numeric representation of the label) and a labelmap which maps the numeric IDs to human readable strings. The annotations are normalized to lie within the range [0, 1]. Format Description: Each image has one txt file with a single line for each bounding box. The format of each row is: < object-class-ID> Example: img0001.txt 0 0.5606640625 0.5308463541666667 0.0219140625 0.026901041666666667 0 0.48796875 0.5444921875000001 0.025380859375 0.02384114583333333 0 0.357890625 0.5558593749999999 0.022822265625 0.028203125
dc.datacite.DescriptionType
Métodos
dc.datacite.DescriptionType
Información Técnica
dc.datacite.FundingReference
01130-PICT 2020-ANPCYT
dc.datacite.FunderName
Ministerio de Ciencia, Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo para la Investigación Científica y Tecnológica
dc.subject.keyword
DEEP LEARNING
dc.subject.keyword
REAL-TIME ANALYSIS
dc.subject.keyword
CELL COUNTING
dc.subject.keyword
CELL ADHESION
dc.datacite.resourceTypeGeneral
dataset
dc.conicet.datoinvestigacionid
19920
dc.conicet.justificacion
No corresponde al experimento de microscopía en este contexto.
dc.datacite.formatedDate
2023-2024
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño