Mostrar el registro sencillo del ítem

dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Traiviratana, Sirirat  
dc.contributor.author
Meyers, Marc A.  
dc.date.available
2024-08-21T10:27:25Z  
dc.date.issued
2010-08  
dc.identifier.citation
Bringa, Eduardo Marcial; Traiviratana, Sirirat; Meyers, Marc A.; Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects; Pergamon-Elsevier Science Ltd; Acta Materialia; 58; 13; 8-2010; 4458-4477  
dc.identifier.issn
1359-6454  
dc.identifier.uri
http://hdl.handle.net/11336/242913  
dc.description.abstract
It is shown, through molecular dynamics simulations, that the emission and outward expansion of special dislocation loops, nucleated at the surface of nanosized voids, are responsible for the outward flux of matter, promoting their growth. Calculations performed for different orientations of the tensile axis, [0 0 1], [1 1 0] and [1 1 1], reveal new features of these loops for a face-centered cubic metal, copper, and show that their extremities remain attached to the surface of voids. There is a significant effect of the loading orientation on the sequence in which the loops form and interact. As a consequence, the initially spherical voids develop facets. Calculations reveal that loop emission occurs for voids with radii as low as 0.15 nm, containing two vacancies. This occurs at a von Mises stress approximately equal to 0.12G (where G is the shear modulus of the material), and is close to the stress at which dislocation loops nucleate homogeneously. The velocities of the leading partial dislocations are measured and found to be subsonic (∼1000 m s−1). It is shown, for nanocrystalline metals that void initiation takes place at grain boundaries and that their growth proceeds by grain boundary debonding and partial dislocation emission into the grains. The principal difference with monocrystals is that the voids do not become spherical and that their growth proceeds along the boundaries. Differences in stress states (hydrostatic and uniaxial strain) are discussed. The critical stress for void nucleation and growth in the nanocrystalline metal is considerably lower than in the monocrystalline case by virtue of the availability of nucleation sites at grain boundaries (von Mises stress ∼0.05G). This suggests a hierarchy of nucleation sites in materials, starting with dispersed phases, triple points and grain boundaries, and proceeding with vacancy complexes up to divacancies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
molecular dynamics  
dc.subject
dislocations  
dc.subject
copper  
dc.subject
nanostructure  
dc.subject
voids  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-19T11:49:24Z  
dc.journal.volume
58  
dc.journal.number
13  
dc.journal.pagination
4458-4477  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Traiviratana, Sirirat. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos  
dc.journal.title
Acta Materialia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410002594  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.actamat.2010.04.043