Artículo
Nonlinear Schroedinger equation in the presence of uniform acceleration
Fecha de publicación:
04/2013
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a recently proposed nonlinear Schroedinger equation exhibiting solitonlike solutions of the power-law form ei(kx−wt) q , involving the q-exponential function which naturally emerges within nonextensive thermostatistics [ez q ≡ [1 + (1 − q)z] 1/(1−q) , with ez 1 = ez ]. Since these basic solutions behave like free particles, obeying p = k, E = ω, and E = p2/2m (1 ≤ q < 2), it is relevant to investigate how they change under the effect of uniform acceleration, thus providing the first steps towards the application of the aforementioned nonlinear equation to the study of physical scenarios beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving under a constant force − ma. The latter interpretation naturally leads to the evolution equation i ∂ ∂t 0 = − 1 2−q 2 2m ∂2 ∂x2 0 2−q + V(x) 0 q with V(x) = max. Remarkably enough, the potential V couples to q, instead of coupling to , as happens in the familiar linear case (q = 1).
Palabras clave:
Nonlinear Schroedinger Equation
,
Uniform Acceleration
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Plastino, Ángel Ricardo; Tsallis, C.; Nonlinear Schroedinger equation in the presence of uniform acceleration; American Institute of Physics; Journal of Mathematical Physics; 54; 4; 4-2013; 41505-41510
Compartir
Altmétricas