Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Some properties of regression estimators in GEE models for clustered ordinal data

Nores, Maria LauraIcon ; Diaz, Maria del Pilar
Fecha de publicación: 03/2008
Editorial: Elsevier Science
Revista: Computational Statistics and Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

In this paper we study properties of the estimators of marginal mean parameters in the GEE1approac h of Heagerty and Zeger (J. Amer. Statist. Assoc. 91 (1996) 1024) for clustered ordinal data. We consider two aspects: coverage probabilities and efficiency. The first point was tackled by a simulation study, calculating empirical levels of confidence intervals for regression parameters using different sample sizes. We conclude that inferences have more validity for sample sizes greater than 100, while some care must be taken when the number of clusters is smaller since in several situations empirical levels were much lower than nominal levels. Regarding the second aspect, we studied asymptotic efficiency for the case of an independence working specification in relation to a correctly specified exchangeable association structure. We extended to ordinal measurements the results derived for binary outcomes, sustaining that the loss of efficiency depends both on the intensity of the association between responses and the design matrix. We showed that relative efficiency of independence to exchangeable estimator is high when responses are independent, when covariates are mean-balanced, or when all covariates are constant within clusters. However, relative efficiency noticeably declines with increasing association for non mean-balanced within-cluster covariates. Simulation studies also supported these conclusions for data with an approximately exchangeable association structure.
Palabras clave: COVERAGE PROBABILITIES , EFFICIENCY , ASSOCIATION , GLOBAL ODDS RATIOS , COVARIATE DESIGN
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 763.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/242194
URL: https://www.sciencedirect.com/science/article/pii/S0167947307004689
DOI: http://dx.doi.org/10.1016/j.csda.2007.12.009
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Nores, Maria Laura; Diaz, Maria del Pilar; Some properties of regression estimators in GEE models for clustered ordinal data; Elsevier Science; Computational Statistics and Data Analysis; 52; 7; 3-2008; 3877-3888
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES