Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean

Demarchi, Maria MilagrosIcon ; Chiappero, Marina BeatrizIcon ; Laudien, Jürgen; Sahade, Ricardo JoseIcon
Fecha de publicación: 09/2008
Editorial: Elsevier Science
Revista: Journal of Experimental Marine Biology and Ecology
ISSN: 0022-0981
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otros Tópicos Biológicos

Resumen

The actual Arctic biota shows a strong affinity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.finity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.flow among populations in the fjord.
Palabras clave: ARCTIC , ASCIDIAN , GENETIC STRUCTURE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 540.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/242172
URL: https://www.sciencedirect.com/science/article/pii/S0022098108002918
DOI: http://dx.doi.org/10.1016/j.jembe.2008.06.022
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IDEA)
Articulos de INSTITUTO DE DIVERSIDAD Y ECOLOGIA ANIMAL
Citación
Demarchi, Maria Milagros; Chiappero, Marina Beatriz; Laudien, Jürgen; Sahade, Ricardo Jose; Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 364; 1; 9-2008; 29-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES