Mostrar el registro sencillo del ítem

dc.contributor.author
Nelson, Tammie  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.contributor.author
Roitberg, Adrián  
dc.contributor.author
Tretiak, Sergei  
dc.date.available
2017-09-13T20:57:57Z  
dc.date.issued
2013-04  
dc.identifier.citation
Nelson, Tammie; Fernández Alberti, Sebastián; Roitberg, Adrián; Tretiak, Sergei; Conformational disorder in energy transfer: beyond Förster theory; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 15; 4-2013; 9245-9256  
dc.identifier.issn
1463-9076  
dc.identifier.uri
http://hdl.handle.net/11336/24213  
dc.description.abstract
Energy transfer in donor–acceptor chromophore pairs, where the absorption of each species is well separated while donor emission and acceptor absorption overlap, can be understood through a Förster resonance energy transfer model. The picture is more complex for organic conjugated polymers, where the total absorption spectrum can be described as a sum of the individual contributions from each subunit (chromophore), whose absorption is not well separated. Although excitations in these systems tend to be well localized, traditional donors and acceptors cannot be defined and energy transfer can occur through various pathways where each subunit (chromophore) is capable of playing either role. In addition, fast torsional motions between individual monomers can break conjugation and lead to reordering of excited state energy levels. Fast torsional fluctuations occur on the same timescale as electronic transitions leading to multiple trivial unavoided crossings between excited states during dynamics. We use the non-adiabatic excited state molecular dynamics (NA-ESMD) approach to simulate energy transfer between two poly-phenylene vinylene (PPV) oligomers composed of 3-rings and 4-rings, respectively, separated by varying distances. The change in the spatial localization of the transient electronic transition density, initially localized on the donors, is used to determine the transfer rate. Our analysis shows that evolution of the intramolecular transition density can be decomposed into contributions from multiple transfer pathways. Here we present a detailed analysis of ensemble dynamics as well as a few representative trajectories which demonstrate the intertwined role of electronic and conformational processes. Our study reveals the complex nature of energy transfer in organic conjugated polymer systems and emphasizes the caution that must be taken in performing such an analysis when a single simple unidirectional pathway is unlikely.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Forster  
dc.subject
Energy  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Conformational disorder in energy transfer: beyond Förster theory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-12T16:31:35Z  
dc.journal.volume
23  
dc.journal.number
15  
dc.journal.pagination
9245-9256  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.description.fil
Fil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unidos  
dc.journal.title
Physical Chemistry Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/c3cp50857a  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2013/CP/c3cp50857a#!divAbstract