Mostrar el registro sencillo del ítem
dc.contributor.author
García Melián, Jorge
dc.contributor.author
Rossi, Julio Daniel
dc.contributor.author
Sabina de Lis, José C.
dc.date.available
2024-08-08T13:53:23Z
dc.date.issued
2007-06
dc.identifier.citation
García Melián, Jorge; Rossi, Julio Daniel; Sabina de Lis, José C.; Large solutions to the p-Laplacian for large p; Springer; Calculus Of Variations And Partial Differential Equations; 31; 2; 6-2007; 187-204
dc.identifier.issn
0944-2669
dc.identifier.uri
http://hdl.handle.net/11336/242121
dc.description.abstract
In this work we consider the behaviour for large values of p of the unique positive weak solution u p to pu = uq in , u = +∞ on ∂, where q > p − 1. We take q = q(p) and analyze the limit of u p as p → ∞. We find that when q(p)/p → Q the behaviour strongly depends on Q. If 1 < Q < ∞ then solutions converge uniformly in compacts to a viscosity solution of max{− ∞u, −|∇u| + uQ} = 0 with u = +∞ on ∂. If Q = 1 then solutions go to ∞ in the whole and when Q = ∞ solutions converge to 1 uniformly in compact subsets of , hence the boundary blow-up is lost in the limit.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SOLUTIONS
dc.subject
P-LAPLACIAN
dc.subject
LARGE P
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Large solutions to the p-Laplacian for large p
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-07T15:27:04Z
dc.journal.volume
31
dc.journal.number
2
dc.journal.pagination
187-204
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: García Melián, Jorge. Universidad de La Laguna; España
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Sabina de Lis, José C.. No especifíca;
dc.journal.title
Calculus Of Variations And Partial Differential Equations
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-007-0109-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00526-007-0109-6
Archivos asociados