Artículo
A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
Fecha de publicación:
12/2007
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics and its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact timedependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.q-entropy shape are obtained.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Troncoso, P.; Fierro, O.; Curilef, S.; Plastino, Ángel Ricardo; A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 375; 2; 12-2007; 457-466
Compartir
Altmétricas