Mostrar el registro sencillo del ítem
dc.contributor.author
Natale, María Fernanda
dc.contributor.author
Santillan Marcus, Eduardo Adrian
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2024-08-08T11:45:09Z
dc.date.issued
2010-03
dc.identifier.citation
Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-1952
dc.identifier.issn
1468-1218
dc.identifier.uri
http://hdl.handle.net/11336/242087
dc.description.abstract
We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
STEFAN PROBLEM
dc.subject
SOLIDIFICATION PROBLEM
dc.subject
FREE BOUNDARY PROBLEM
dc.subject
SHRINKAGE
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-06T14:54:42Z
dc.journal.volume
11
dc.journal.number
3
dc.journal.pagination
1946-1952
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Natale, María Fernanda. Universidad Austral; Argentina
dc.description.fil
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral; Argentina
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Nonlinear Analysis-real World Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S146812180900203X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nonrwa.2009.04.014
Archivos asociados