Artículo
A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces
Fecha de publicación:
10/2009
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recently, Cariñena, et al. Ann. Phys. 322, 434 2007 introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. Phys. Lett. A 156, 381 1991 , and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positive curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.
Palabras clave:
quantum harmonic oscillators
,
constant curvature spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Vignat, C.; Lamberti, Pedro Walter; A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces; American Institute of Physics; Journal of Mathematical Physics; 50; 10; 10-2009; 1-10
Compartir
Altmétricas