Mostrar el registro sencillo del ítem
dc.contributor.author
Bai, Mingyuan
dc.contributor.author
Huang, Wei
dc.contributor.author
Li, Tenghui
dc.contributor.author
Wang, Andong
dc.contributor.author
Gao, Junbin
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Zhao, Qibin
dc.contributor.other
Salakhutdino, Ruslan
dc.date.available
2024-08-07T09:53:24Z
dc.date.issued
2024
dc.identifier.citation
Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance; 41st International Conference on Machine Learning; Viena; Austria; 2024; 1-17
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/11336/241923
dc.description.abstract
In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MLR press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
stable diffusion
dc.subject
adversarial attacks
dc.subject
purification
dc.subject
artificial intelligence
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-06-13T10:33:24Z
dc.journal.volume
235
dc.journal.pagination
1-17
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Bai, Mingyuan. Riken. Center of Advanced Intelligence Project; Japón
dc.description.fil
Fil: Huang, Wei. Riken. Center of Advanced Intelligence Project; Japón
dc.description.fil
Fil: Li, Tenghui. Riken. Center of Advanced Intelligence Project; Japón
dc.description.fil
Fil: Wang, Andong. Riken. Center of Advanced Intelligence Project; Japón
dc.description.fil
Fil: Gao, Junbin. The University of Sydney; Australia
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Zhao, Qibin. Riken. Center of Advanced Intelligence Project; Japón
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://icml.cc
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://icml.cc/virtual/2024/poster/35110
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v235/bai24b.html
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
41st International Conference on Machine Learning
dc.date.evento
2024-07-21
dc.description.ciudadEvento
Viena
dc.description.paisEvento
Austria
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Carnegie Mellen University
dc.source.libro
ICML 2024 Proceedings
dc.source.revista
Proceedings of Machine Learning Research
dc.date.eventoHasta
2024-07-27
dc.type
Conferencia
Archivos asociados