Mostrar el registro sencillo del ítem

dc.contributor.author
Bai, Mingyuan  
dc.contributor.author
Huang, Wei  
dc.contributor.author
Li, Tenghui  
dc.contributor.author
Wang, Andong  
dc.contributor.author
Gao, Junbin  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhao, Qibin  
dc.contributor.other
Salakhutdino, Ruslan  
dc.date.available
2024-08-07T09:53:24Z  
dc.date.issued
2024  
dc.identifier.citation
Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance; 41st International Conference on Machine Learning; Viena; Austria; 2024; 1-17  
dc.identifier.issn
2640-3498  
dc.identifier.uri
http://hdl.handle.net/11336/241923  
dc.description.abstract
In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MLR press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
stable diffusion  
dc.subject
adversarial attacks  
dc.subject
purification  
dc.subject
artificial intelligence  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-06-13T10:33:24Z  
dc.journal.volume
235  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Bai, Mingyuan. Riken. Center of Advanced Intelligence Project; Japón  
dc.description.fil
Fil: Huang, Wei. Riken. Center of Advanced Intelligence Project; Japón  
dc.description.fil
Fil: Li, Tenghui. Riken. Center of Advanced Intelligence Project; Japón  
dc.description.fil
Fil: Wang, Andong. Riken. Center of Advanced Intelligence Project; Japón  
dc.description.fil
Fil: Gao, Junbin. The University of Sydney; Australia  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhao, Qibin. Riken. Center of Advanced Intelligence Project; Japón  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://icml.cc  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://icml.cc/virtual/2024/poster/35110  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v235/bai24b.html  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
41st International Conference on Machine Learning  
dc.date.evento
2024-07-21  
dc.description.ciudadEvento
Viena  
dc.description.paisEvento
Austria  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Carnegie Mellen University  
dc.source.libro
ICML 2024 Proceedings  
dc.source.revista
Proceedings of Machine Learning Research  
dc.date.eventoHasta
2024-07-27  
dc.type
Conferencia