Mostrar el registro sencillo del ítem

dc.contributor.author
Zhou, Zhenyu  
dc.contributor.author
Xie, Sijie  
dc.contributor.author
Cai, Heng  
dc.contributor.author
Colli, Alejandro Nicolás  
dc.contributor.author
Monnens, Wouter  
dc.contributor.author
Zhang, Qichong  
dc.contributor.author
Guo, Wei  
dc.contributor.author
Zhang, Wei  
dc.contributor.author
Han, Ning  
dc.contributor.author
Pan, Hongwei  
dc.contributor.author
Zhang, Xueliang  
dc.contributor.author
Pan, Hui  
dc.contributor.author
Xue, Zhenhong  
dc.contributor.author
Zhang, Xuan  
dc.contributor.author
Yao, Yagang  
dc.contributor.author
Zhang, Jin  
dc.contributor.author
Fransaer, Jan  
dc.date.available
2024-08-05T15:24:55Z  
dc.date.issued
2024-07  
dc.identifier.citation
Zhou, Zhenyu; Xie, Sijie; Cai, Heng; Colli, Alejandro Nicolás; Monnens, Wouter; et al.; A synchronous-twisting method to realize radial scalability in fibrous energy storage devices; Science Advances is the American Association for the Advancement of Science; Science Advances; 10; 29; 7-2024; 1-9  
dc.identifier.issn
2375-2548  
dc.identifier.uri
http://hdl.handle.net/11336/241743  
dc.description.abstract
For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter−1 for Zn-MnO2 batteries and ~107 Wh liter−1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Science Advances is the American Association for the Advancement of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
fibrous energy storage  
dc.subject
synchronous-twisting method  
dc.subject
radial scalability  
dc.subject
supercapacitors  
dc.subject
batteries  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A synchronous-twisting method to realize radial scalability in fibrous energy storage devices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-30T13:01:32Z  
dc.journal.volume
10  
dc.journal.number
29  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Zhou, Zhenyu. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Xie, Sijie. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Cai, Heng. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Monnens, Wouter. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Zhang, Qichong. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Guo, Wei. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Zhang, Wei. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Han, Ning. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Pan, Hongwei. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Zhang, Xueliang. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Pan, Hui. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Xue, Zhenhong. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Zhang, Xuan. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Yao, Yagang. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Zhang, Jin. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.description.fil
Fil: Fransaer, Jan. Ku Leuven. Department Of Materials Engineering; Bélgica  
dc.journal.title
Science Advances  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.science.org/doi/10.1126/sciadv.ado7826  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1126/sciadv.ado7826