Mostrar el registro sencillo del ítem
dc.contributor.author
Mazzone, Fernando Dario

dc.contributor.author
Schwindt, Erica Leticia

dc.date.available
2024-08-05T15:09:39Z
dc.date.issued
2007-03
dc.identifier.citation
Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178
dc.identifier.issn
0147-1937
dc.identifier.uri
http://hdl.handle.net/11336/241740
dc.description.abstract
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Michigan State University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MINIMAX
dc.subject
NATURAL
dc.subject
BEST
dc.subject
APPROXIMANTS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-05T13:47:07Z
dc.journal.volume
32
dc.journal.number
1
dc.journal.pagination
171-178
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Michigan
dc.description.fil
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina
dc.description.fil
Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina
dc.journal.title
Real Analysis Exchange

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.full
Archivos asociados