Mostrar el registro sencillo del ítem
dc.contributor.author
Di Verniero, Carla
dc.contributor.author
Höcht, Christian
dc.contributor.author
Opezzo, Javier A. W.
dc.contributor.author
Taira, Carlos Alberto
dc.date.available
2024-08-05T14:24:50Z
dc.date.issued
2007-01
dc.identifier.citation
Di Verniero, Carla; Höcht, Christian; Opezzo, Javier A. W.; Taira, Carlos Alberto; Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 34; 3; 1-2007; 161-165
dc.identifier.issn
0305-1870
dc.identifier.uri
http://hdl.handle.net/11336/241726
dc.description.abstract
SUMMARY 1. The present study addressed possible changes in the dissociation constant of metoprolol and its inverse agonist activity in spontaneously hypertensive rats (SHR). In addition, a possible correlation between cardiac hypertrophy and the inverse agonist activity of metoprolol was explored. 2. In order to determine the dissociation constant (expressed as the pKb) of metoprolol, a cumulative concentration–response curve to noradrenaline was constructed in the absence or presence of metoprolol (0.1, 1 or 10 mmol/L). In a second experiment, a cumulative concentration–response curve to metoprolol was constructed to determine its inverse agonist activity. 3. The ventricular weight of SHR was significantly greater compared with Wistar-Kyoto (WKY) rats. A rightward shift of the concentration–response curve to noradrenaline was observed in SHR compared with WKY rats. The pKb of metoprolol was smaller in SHR compared with WKY rats (6.35 ± 0.14 vs 6.99 ± 0.12, respectively; P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A signi
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
cardiac hypertrophy
dc.subject
chronotropic effect
dc.subject
dissociation constant
dc.subject
inverse agonist activity
dc.subject
metoprolol
dc.subject
spontaneously hypertension
dc.subject.classification
Farmacología y Farmacia
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-05T14:01:15Z
dc.journal.volume
34
dc.journal.number
3
dc.journal.pagination
161-165
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Di Verniero, Carla. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
dc.description.fil
Fil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
dc.description.fil
Fil: Opezzo, Javier A. W.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
dc.description.fil
Fil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Clinical and Experimental Pharmacology and Physiology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1681.2007.04566.x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/j.1440-1681.2007.04566.x
Archivos asociados