Artículo
Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximization algorithm
Fecha de publicación:
04/2017
Editorial:
Wiley
Revista:
Quarterly Journal of the Royal Meteorological Society
ISSN:
0035-9009
e-ISSN:
1477-870X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximization (EM) algorithm to estimate the model-error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non-additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Dreano, D.; Tandeo, Pi.; Pulido, Manuel Arturo; Ait-El-Fquih, B.; Chonavel, T.; et al.; Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximization algorithm; Wiley; Quarterly Journal of the Royal Meteorological Society; 143; 705; 4-2017; 1877-1885
Compartir
Altmétricas