Mostrar el registro sencillo del ítem

dc.contributor.author
Luján, Emmanuel  
dc.contributor.author
Guerra, Liliana Noemi  
dc.contributor.author
Soba, Alejandro  
dc.contributor.author
Visacovsk, Nicolás  
dc.contributor.author
Gandia, Daniel  
dc.contributor.author
Calvo, Juan Carlos  
dc.contributor.author
Suárez, Cecilia Ana  
dc.date.available
2017-09-13T16:50:17Z  
dc.date.issued
2016-08-08  
dc.identifier.citation
Luján, Emmanuel; Guerra, Liliana Noemi; Soba, Alejandro; Visacovsk, Nicolás; Gandia, Daniel; et al.; Mathematical modelling of microtumour infiltration based on in vitro experiments; Royal Society of Chemistry; Integrative Biology; 8; 8; 8-8-2016; 879-885  
dc.identifier.issn
1757-9694  
dc.identifier.uri
http://hdl.handle.net/11336/24157  
dc.description.abstract
The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction?convection?diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland?Altman analysis. This kind of experimental?numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Tumour Infiltration  
dc.subject
In Vitro Experiments  
dc.subject
Mathematical Modelling  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mathematical modelling of microtumour infiltration based on in vitro experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-08-31T20:31:35Z  
dc.identifier.eissn
1757-9708  
dc.journal.volume
8  
dc.journal.number
8  
dc.journal.pagination
879-885  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Visacovsk, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Gandia, Daniel. Sanatorio de Los Arcos; Argentina  
dc.description.fil
Fil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina  
dc.description.fil
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.journal.title
Integrative Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/IB/C6IB00110F  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/c6ib00110f  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/pmid/27466056