Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing Viscosity in Sustainable Deep Eutectic Solvents and Cosolvent Mixtures: An Artificial Neural Network-Based Molecular Approach

Tavares Duarte de Alencar, Luan Vittor; Rodriguez Reartes, Sabrina BelenIcon ; Tavares, Frederico Wanderley; Llovell, Fèlix
Fecha de publicación: 12/05/2024
Editorial: American Chemical Society
Revista: ACS Sustainable Chemistry and Engineering
e-ISSN: 2168-0485
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Química

Resumen

Deep eutectic solvents (DESs) are gaining recognition as environmentally friendly solvent alternatives for diverse chemical processes. Yet, designing DESs tailored to specific applications is a resource-intensive task, which requires an accurate estimation of their physicochemical properties. Among them, viscosity is crucial, as it often dictates a DES’s suitability as a solvent. In this study, an artificial neural network (ANN) is introduced to accurately describe the viscosity of DESs and their mixtures with cosolvents. The ANN utilizes molecular parameters derived from σ-profiles, computed using the conductor-like screening model for the real solvent segment activity coefficient (COSMO-SAC). The data set comprises 1891 experimental viscosity measurements for 48 DESs based on choline chloride, encompassing 279 different compositions, along with 1618 data points of DES mixtures with cosolvents as water, methanol, isopropanol, and dimethyl sulfoxide, covering a wide range of viscosity measurements from 0.3862 to 4722 mPa s. The optimal ANN structure for describing the logarithmic viscosity of DESs is configured as 9-19-16-1, achieving an overall average absolute relative deviation of 1.6031%. More importantly, the ANN shows a remarkable extrapolation capacity, as it is capable of predicting the viscosity of systems including solvents (ethanol) and hydrogen bond donors (2,3-butanediol) not considered in the training. The ANN model also demonstrates an extensive applicability domain, covering 94.17% of the entire database. These achievements represent a significant step forward in developing robust, open source, and highly accurate models for DESs using molecular descriptors.
Palabras clave: DEEP EUTECTIC SOLVENTS , VISCOSITY , MACHINE LEARNING , ARTIFICIAL NEURAL NETWORK , COSMO-SAC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.297Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/241500
DOI: http://dx.doi.org/10.1021/acssuschemeng.3c07219
URL: https://pubs.acs.org/doi/10.1021/acssuschemeng.3c07219
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Tavares Duarte de Alencar, Luan Vittor; Rodriguez Reartes, Sabrina Belen; Tavares, Frederico Wanderley; Llovell, Fèlix; Assessing Viscosity in Sustainable Deep Eutectic Solvents and Cosolvent Mixtures: An Artificial Neural Network-Based Molecular Approach; American Chemical Society; ACS Sustainable Chemistry and Engineering; 12; 21; 12-5-2024; 7987-8000
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES