Mostrar el registro sencillo del ítem

dc.contributor.author
Candia, Julian Marcelo  
dc.contributor.author
Maunu, Ryan  
dc.contributor.author
Driscoll, Meghan  
dc.contributor.author
Biancotto, Angélique  
dc.contributor.author
Dagur, Pradeep  
dc.contributor.author
McCoy Jr., J Philip  
dc.contributor.author
Nida Sen, H.  
dc.contributor.author
Wei, Lai  
dc.contributor.author
Maritan, Amos  
dc.contributor.author
Cao, Kan  
dc.contributor.author
Nussenblatt, Robert B  
dc.contributor.author
Banavar, Jayanth R.  
dc.contributor.author
Losert, Wolfgang  
dc.date.available
2017-09-13T15:07:39Z  
dc.date.issued
2013-09-05  
dc.identifier.citation
Candia, Julian Marcelo; Maunu, Ryan; Driscoll, Meghan; Biancotto, Angélique; Dagur, Pradeep; et al.; From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells; Public Library of Science; Plos Computational Biology; 9; 9; 5-9-2013; 1-10  
dc.identifier.issn
1553-734X  
dc.identifier.uri
http://hdl.handle.net/11336/24123  
dc.description.abstract
Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of ‘‘supercell statistics’’, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behc¸et’s disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behc¸et’s disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Disease Phenotypes  
dc.subject
Supercells  
dc.subject
Disease Diagnosis  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-01T17:44:19Z  
dc.journal.volume
9  
dc.journal.number
9  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Candia, Julian Marcelo. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Maunu, Ryan. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Driscoll, Meghan. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Biancotto, Angélique. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: Dagur, Pradeep. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: McCoy Jr., J Philip. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: Nida Sen, H.. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: Wei, Lai. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: Maritan, Amos. Università di Padova; Italia  
dc.description.fil
Fil: Cao, Kan. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Nussenblatt, Robert B. National Institutes of Health; Estados Unidos  
dc.description.fil
Fil: Banavar, Jayanth R.. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Losert, Wolfgang. University of Maryland; Estados Unidos  
dc.journal.title
Plos Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003215  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1003215