Mostrar el registro sencillo del ítem
dc.contributor.author
Candia, Julian Marcelo
dc.contributor.author
Maunu, Ryan
dc.contributor.author
Driscoll, Meghan
dc.contributor.author
Biancotto, Angélique
dc.contributor.author
Dagur, Pradeep
dc.contributor.author
McCoy Jr., J Philip
dc.contributor.author
Nida Sen, H.
dc.contributor.author
Wei, Lai
dc.contributor.author
Maritan, Amos
dc.contributor.author
Cao, Kan
dc.contributor.author
Nussenblatt, Robert B
dc.contributor.author
Banavar, Jayanth R.
dc.contributor.author
Losert, Wolfgang
dc.date.available
2017-09-13T15:07:39Z
dc.date.issued
2013-09-05
dc.identifier.citation
Candia, Julian Marcelo; Maunu, Ryan; Driscoll, Meghan; Biancotto, Angélique; Dagur, Pradeep; et al.; From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells; Public Library of Science; Plos Computational Biology; 9; 9; 5-9-2013; 1-10
dc.identifier.issn
1553-734X
dc.identifier.uri
http://hdl.handle.net/11336/24123
dc.description.abstract
Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of ‘‘supercell statistics’’, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behc¸et’s disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behc¸et’s disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Disease Phenotypes
dc.subject
Supercells
dc.subject
Disease Diagnosis
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Bioquímica y Biología Molecular
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-01T17:44:19Z
dc.journal.volume
9
dc.journal.number
9
dc.journal.pagination
1-10
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Candia, Julian Marcelo. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
dc.description.fil
Fil: Maunu, Ryan. University of Maryland; Estados Unidos
dc.description.fil
Fil: Driscoll, Meghan. University of Maryland; Estados Unidos
dc.description.fil
Fil: Biancotto, Angélique. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Dagur, Pradeep. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: McCoy Jr., J Philip. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Nida Sen, H.. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Wei, Lai. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Maritan, Amos. Università di Padova; Italia
dc.description.fil
Fil: Cao, Kan. University of Maryland; Estados Unidos
dc.description.fil
Fil: Nussenblatt, Robert B. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Banavar, Jayanth R.. University of Maryland; Estados Unidos
dc.description.fil
Fil: Losert, Wolfgang. University of Maryland; Estados Unidos
dc.journal.title
Plos Computational Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003215
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1003215
Archivos asociados