Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Aspects of three-dimensional higher curvature gravities

Bueno, Pablo; Cano, Pablo A.; Llorens, Quim; Moreno, Javier; Van Der Velde, Guido GustavoIcon
Fecha de publicación: 05/2022
Editorial: IOP Publishing
Revista: Classical and Quantum Gravity
ISSN: 0264-9381
e-ISSN: 1361-6382
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

We present new results involving general higher-curvature gravities in three dimensions. The most general Lagrangian of that kind can be written as a function of R, S_2, S_3, where R is the Ricci scalar, S_2= R^a_b R^b_a, S_3=R^a_b R^b_c R^c_a, and R_ab is the traceless part of the Ricci tensor. First, we provide a general formula for the exact number of independent order-n densities, #(n). This satisfies the identity #(n − 6) = #(n) − n. Then, we show that, linearized around a general Einstein solution, a generic order-n ⩾ 2 density can be written as a linear combination of R^n, which by itself would not propagate the generic massive graviton, plus a density which by itself would not propagate the generic scalar mode, R^n-12 n(n-1)R^{n-2} S_2, plus #(n) − 2 densities which contribute trivially to the linearized equations. Next, we obtain an analytic formula for the quasinormal modes and frequencies of the BTZ black hole as a function of the masses of the graviton and scalar modes for a general theory. Then, we provide a recursive formula as well as a general closed expression for order-n densities which non-trivially satisfy an holographic c-theorem, clarify their relation with Born–Infeld gravities and prove that the scalar mode is always absent from their spectrum. We show that, at each order n ⩾ 6, there exist #(n − 6) densities which satisfy the holographic c-theorem in a trivial way and that all of them are proportional to a single sextic density Omega_6=6S_3^2-S_2^3. Next, we show that there are also #(n − 6) order-n generalized quasi-topological densities in three dimensions, all of which are ´trivial´ in the sense of making no contribution to the metric function equation. Remarkably, the set of such densities turns out to coincide exactly with the one of theories trivially satisfying the holographic c-theorem. We comment on the meaning of Ω(6) and its relation to the Segre classification of three-dimensional metrics.
Palabras clave: Three dimensions , Higher curvature gravities
Ver el registro completo
 
Archivos asociados
Tamaño: 1.175Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/241204
URL: https://iopscience.iop.org/article/10.1088/1361-6382/ac6cbf
DOI: http://dx.doi.org/10.1088/1361-6382/ac6cbf
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Bueno, Pablo; Cano, Pablo A.; Llorens, Quim; Moreno, Javier; Van Der Velde, Guido Gustavo; Aspects of three-dimensional higher curvature gravities; IOP Publishing; Classical and Quantum Gravity; 39; 12; 5-2022; 1-40
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES