Artículo
Learning causality structures from electricity demand data
Maisonnave, Mariano
; Delbianco, Fernando Andrés
; Tohmé, Fernando Abel
; Milios, Evangelos; Maguitman, Ana Gabriela
Fecha de publicación:
28/06/2024
Editorial:
Springer Verlag Berlín
Revista:
Energy Systems
ISSN:
1868-3967
e-ISSN:
1868-3975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present an alternative approach to predictive modeling for future energy demands. It is based on the application of causal detection models to create specifcations of how this demand might be caused by diferent environmental and social factors. We proceed by using a dataset generated by the wholesale electricity company of Argentina (CAMMESA) and selecting four prominent causal detection methods identifed in the literature. These methods were selected based on their demonstrated efectiveness and widespread adoption. Since these causal detection methods yield diferent causal graphs, we were able to construct an ensemble model that achieved better performance for recovering the true causal structure when applied to the full dataset. Also, we show that the variables in the causal model can be used to yield more accurate forecasts of future demands, improving over the informal models used by staf in electricity utilities.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Maisonnave, Mariano; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Milios, Evangelos; Maguitman, Ana Gabriela; Learning causality structures from electricity demand data; Springer Verlag Berlín; Energy Systems; 28-6-2024; 1-23
Compartir
Altmétricas