Mostrar el registro sencillo del ítem
dc.contributor.author
Carneiro, Candice N.
dc.contributor.author
Gomez, Federico Jose Vicente
dc.contributor.author
Spisso, Adrián Andrés
dc.contributor.author
Silva, María Fernanda
dc.contributor.author
Santos, Jorge L. O.
dc.contributor.author
Dias, Fabio de S.
dc.date.available
2024-07-26T15:54:45Z
dc.date.issued
2023-09
dc.identifier.citation
Carneiro, Candice N.; Gomez, Federico Jose Vicente; Spisso, Adrián Andrés; Silva, María Fernanda; Santos, Jorge L. O.; et al.; Exploratory analysis of south American wines using Artificial intelligence; Springer; Biological Trace Element Research; 201; 9; 9-2023; 4590-4599
dc.identifier.issn
0163-4984
dc.identifier.uri
http://hdl.handle.net/11336/241006
dc.description.abstract
In this work, microwave-induced plasma optical emission spectrometry was applied for multielement determination in South American wine samples. The analytes were determined after acid digestion of 47 samples of Brazilian and Argentinian wines. Then, logistic regression, support vector machine, and decision tree for exploratory analysis and comparison of these algorithms in differentiating red wine samples by region of origin were carried out. All wine samples were classified according to their geographical origin. The quantification limits (mg L−1) were P: 0.06, B: 0.08, K: 0.17, Mn: 0.002, Cr: 0.002, and Al: 0.02. The accuracy of the method was evaluated by analyzing the wine samples by ICP OES for results’ comparison. The concentrations in mg L−1 found for each element in wine samples were as follows: Al (< 0.02–1.82), Cr (0.15–0.50), Mn (< 0.002–0.8), P (97–277), B (1.7–11.6), Pb (< 0.06–0.3), Na (8.84–41.57), and K (604–1701), in mg L−1.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELEMENTAL COMPOSITION
dc.subject
MICROWAVE-INDUCED PLASMA OPTICAL EMISSION SPECTROMETRY
dc.subject
WINE
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Exploratory analysis of south American wines using Artificial intelligence
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-24T13:06:12Z
dc.journal.volume
201
dc.journal.number
9
dc.journal.pagination
4590-4599
dc.journal.pais
Alemania
dc.description.fil
Fil: Carneiro, Candice N.. Universidade Federal Do Reconcavo Da Bahia; Brasil
dc.description.fil
Fil: Gomez, Federico Jose Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
dc.description.fil
Fil: Spisso, Adrián Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
dc.description.fil
Fil: Silva, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina
dc.description.fil
Fil: Santos, Jorge L. O.. Universidade Federal Do Oeste Da Bahia; Brasil
dc.description.fil
Fil: Dias, Fabio de S.. Universidade Federal da Bahia; Brasil
dc.journal.title
Biological Trace Element Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12011-022-03529-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12011-022-03529-4
Archivos asociados