Mostrar el registro sencillo del ítem

dc.contributor.author
Kuchen, Benjamín  
dc.contributor.author
Groff, Maria Carla  
dc.contributor.author
Pantano, María Nadia  
dc.contributor.author
Pedrozo, Lina Paula  
dc.contributor.author
Vazquez, Fabio  
dc.contributor.author
Scaglia, Gustavo Juan Eduardo  
dc.date.available
2024-07-26T10:17:32Z  
dc.date.issued
2024-07  
dc.identifier.citation
Kuchen, Benjamín; Groff, Maria Carla; Pantano, María Nadia; Pedrozo, Lina Paula; Vazquez, Fabio; et al.; Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction; MPDI; Processes; 12; 7; 7-2024; 1-18  
dc.identifier.issn
2227-9717  
dc.identifier.uri
http://hdl.handle.net/11336/240925  
dc.description.abstract
The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influence on human health and its use is criticized. Biocontrol emerges as an alternative in wine pre-fermentation, but there is limited development in its applicability. Managing kinetics is relevant in the microbial interaction process. pH was identified as a factor affecting the interaction kinetics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical modeling allows insight into offline parameters and the influence of physicochemical factors in the environment. Incorporating submodels that explain manipulable factors (pH), the process can be optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were studied at different pH levels maintained constant over time. The improved Ramón-Portugal model was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile was performed using the Monte Carlo method, and a dynamic optimization was carried out using a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimization achieved a lower initial spoilage population peak (99% less) and reached a lower final population (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable profile would allow an early sequential inoculation of S. cerevisiae. The models explained parameters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensitivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a technological standpoint, the study highlights the importance of handling variable profiles in the controller associated with the pH management actuators in the process without incurring additional costs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MPDI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BIOCONTROL  
dc.subject
WINE SPOILEAGE  
dc.subject
KILLER YEAST  
dc.subject
FERMENTATION  
dc.subject.classification
Bioprocesamiento Tecnológico, Biocatálisis, Fermentación  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modeling and Optimizing Biocontrol in Wines: pH as a Modulator of Yeast Amensalism Interaction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-25T11:30:34Z  
dc.journal.volume
12  
dc.journal.number
7  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Kuchen, Benjamín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Pantano, María Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Pedrozo, Lina Paula. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Vazquez, Fabio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina  
dc.journal.title
Processes  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/12/7/1446  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/pr12071446