Mostrar el registro sencillo del ítem
dc.contributor.author
Nuñez, Matias
dc.contributor.author
Barreiro, Nadia Luisina
dc.contributor.author
Barrio, Rafael Ángel
dc.contributor.author
Rackauckas, Christopher
dc.date.available
2024-07-24T11:26:30Z
dc.date.issued
2023-12
dc.identifier.citation
Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher; Forecasting virus outbreaks with social media data via neural ordinary differential equations; Nature; Scientific Reports; 13; 1; 12-2023; 1-11
dc.identifier.issn
2045-2322
dc.identifier.uri
http://hdl.handle.net/11336/240737
dc.description.abstract
During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
machine learning
dc.subject
neural ode
dc.subject
deep learning
dc.subject
covid 19
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Forecasting virus outbreaks with social media data via neural ordinary differential equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-12T10:24:03Z
dc.journal.volume
13
dc.journal.number
1
dc.journal.pagination
1-11
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Nuñez, Matias. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.description.fil
Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina
dc.description.fil
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Rackauckas, Christopher. No especifíca;
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-023-37118-9
Archivos asociados