Mostrar el registro sencillo del ítem

dc.contributor.author
Nuñez, Matias  
dc.contributor.author
Barreiro, Nadia Luisina  
dc.contributor.author
Barrio, Rafael Ángel  
dc.contributor.author
Rackauckas, Christopher  
dc.date.available
2024-07-24T11:26:30Z  
dc.date.issued
2023-12  
dc.identifier.citation
Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher; Forecasting virus outbreaks with social media data via neural ordinary differential equations; Nature; Scientific Reports; 13; 1; 12-2023; 1-11  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/240737  
dc.description.abstract
During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
machine learning  
dc.subject
neural ode  
dc.subject
deep learning  
dc.subject
covid 19  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Forecasting virus outbreaks with social media data via neural ordinary differential equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-12T10:24:03Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Nuñez, Matias. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina  
dc.description.fil
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Rackauckas, Christopher. No especifíca;  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-023-37118-9