Mostrar el registro sencillo del ítem

dc.contributor.author
Busi, Matteo  
dc.contributor.author
Polatidis, Efthymios  
dc.contributor.author
Samothrakitis, Stavros  
dc.contributor.author
Köhnen, Patrick  
dc.contributor.author
Malamud, Florencia  
dc.contributor.author
Haase, Christian  
dc.contributor.author
Strobl, Markus  
dc.date.available
2024-07-23T13:17:11Z  
dc.date.issued
2023-06  
dc.identifier.citation
Busi, Matteo; Polatidis, Efthymios; Samothrakitis, Stavros; Köhnen, Patrick; Malamud, Florencia; et al.; 3D characterization of magnetic phases through neutron polarization contrast tomography; Elsevier; Additive Manufacturing Letters; 6; 6-2023; 1-5  
dc.identifier.issn
2772-3690  
dc.identifier.uri
http://hdl.handle.net/11336/240661  
dc.description.abstract
The advancement of laser-based metal additive manufacturing has enabled the production of near net shape complex geometries. Understanding the microstructural features of materials is crucial for accurate modeling of their mechanical behavior, particularly with regard to strain- or thermal-induced martensitic phase transformations in ferrous alloys and steels. For example, the formation of BCC α′-martensite can strengthen materials while preserving ductility of the dominating austenitic phase. However, in components where the shape memory effect is attributed to the reversible formation of ε-martensite, the accumulation of deformation-induced α′-martensite is an undesired, irreversible degradation mechanism. This study presents a novel tomographic approach utilizing polarization contrast neutron imaging for the 3D volumetric characterization of magnetic crystallographic phases, especially those present in low phase fractions that are typically undetectable with traditional techniques. The technique is applied to the study of strain-induced martensitic phase transformations in additively manufactured lattice structures made of high-Mn steels, which form small fractions of α′-martensite upon deformation. The results demonstrate the value of this technique for characterizing entire components and complex geometries found in numerous technological applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Neutron imaging  
dc.subject
Polarization contrast neutron imaging  
dc.subject
Magnetic phases  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
3D characterization of magnetic phases through neutron polarization contrast tomography  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-22T13:11:31Z  
dc.journal.volume
6  
dc.journal.pagination
1-5  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Busi, Matteo. Paul Scherrer Institute; Suiza  
dc.description.fil
Fil: Polatidis, Efthymios. Paul Scherrer Institute; Suiza  
dc.description.fil
Fil: Samothrakitis, Stavros. Paul Scherrer Institute; Suiza  
dc.description.fil
Fil: Köhnen, Patrick. No especifíca;  
dc.description.fil
Fil: Malamud, Florencia. Paul Scherrer Institute; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Haase, Christian. No especifíca;  
dc.description.fil
Fil: Strobl, Markus. Paul Scherrer Institute; Suiza  
dc.journal.title
Additive Manufacturing Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.addlet.2023.100155