Mostrar el registro sencillo del ítem
dc.contributor.author
Jaume, Daniel Alejandro
dc.contributor.author
Puente, Rubén Oscar
dc.date.available
2024-07-23T11:27:49Z
dc.date.issued
2005-12
dc.identifier.citation
Jaume, Daniel Alejandro; Puente, Rubén Oscar; Conjugacy for closed convex sets; Hedelmann Verlag; Beitrage R Algebra Geom; 46; 1; 12-2005; 131-149
dc.identifier.issn
0138-4821
dc.identifier.uri
http://hdl.handle.net/11336/240594
dc.description.abstract
Even though the polarity is a well defined operation for arbitrary subsets in the Euclidean n-dimensional space, the related operation of conjugacy of faces appears defined in the literature exclusively for either convex bodies containning the origin as interior point and their polar sets, or for closed convex cones. This paper extends the geometry of closed convex cones and convex bodies to unbounded convex sets (and, in a dual way, to those closed convex sets containing the origin at the boundary), not only for the sake of theoretical completeness, but also for the potential applications of this theory in the fields of Convex Programming and Semi-infinite Programming. Introducing the recession cone into the analysis we develop a general theory of conjugacy which, together with the new concept of curvature index of a convex set on a face, allows us to establish a strong result on complementary dimensions of conjugate faces which extends a well-known result on polytopes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Hedelmann Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONJUGACY
dc.subject
CLOSED
dc.subject
CONVEX
dc.subject
SETS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Conjugacy for closed convex sets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-04T15:02:04Z
dc.journal.volume
46
dc.journal.number
1
dc.journal.pagination
131-149
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina
dc.journal.title
Beitrage R Algebra Geom
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/BAG/vol.46/no.1/b46h1pue.pdf
Archivos asociados