Mostrar el registro sencillo del ítem

dc.contributor.author
Hernández Lahme, Damián Gabriel  
dc.contributor.author
Roman, Ahmed  
dc.contributor.author
Nemenman, Ilya  
dc.date.available
2024-07-23T11:06:28Z  
dc.date.issued
2023-07  
dc.identifier.citation
Hernández Lahme, Damián Gabriel; Roman, Ahmed; Nemenman, Ilya; Low-probability states, data statistics, and entropy estimation; American Physical Society; Physical Review E; 108; 1; 7-2023; 1-10  
dc.identifier.issn
2470-0053  
dc.identifier.uri
http://hdl.handle.net/11336/240587  
dc.description.abstract
A fundamental problem in the analysis of complex systems is getting a reliable estimate of the entropy of their probability distributions over the state space. This is difficult because unsampled states can contribute substantially to the entropy, while they do not contribute to the maximum likelihood estimator of entropy, which replaces probabilities by the observed frequencies. Bayesian estimators overcome this obstacle by introducing a model of the low-probability tail of the probability distribution. Which statistical features of the observed data determine the model of the tail, and hence the output of such estimators, remains unclear. Here we show that well-known entropy estimators for probability distributions on discrete state spaces model the structure of the low-probability tail based largely on a few statistics of the data: the sample size, the maximum likelihood estimate, the number of coincidences among the samples, and the dispersion of the coincidences. We derive approximate analytical entropy estimators for undersampled distributions based on these statistics, and we use the results to propose an intuitive understanding of how the Bayesian entropy estimators work.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ENTROPY  
dc.subject
ESTIMATION  
dc.subject
BAYESIAN  
dc.subject
COINCIDENCES  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Low-probability states, data statistics, and entropy estimation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-23T10:47:12Z  
dc.journal.volume
108  
dc.journal.number
1  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Hernández Lahme, Damián Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Roman, Ahmed. University of Emory; Estados Unidos  
dc.description.fil
Fil: Nemenman, Ilya. University of Emory; Estados Unidos  
dc.journal.title
Physical Review E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1103/PhysRevE.108.014101  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.108.014101