Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández Puchol, María Cecilia
dc.contributor.author
Pantano, Maria Nadia
dc.contributor.author
Groff, Maria Carla
dc.contributor.author
Gil, Rocio Mariel
dc.contributor.author
Scaglia, Gustavo Juan Eduardo
dc.date.available
2024-07-18T14:39:06Z
dc.date.issued
2024-02
dc.identifier.citation
Fernández Puchol, María Cecilia; Pantano, Maria Nadia; Groff, Maria Carla; Gil, Rocio Mariel; Scaglia, Gustavo Juan Eduardo; Bioethanol production optimization by direct numerical methods and evolutionary algorithms; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 259-265
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/240279
dc.description.abstract
This paper develops a dynamic optimization methodology based on direct numerical methods, for the bioethanol fed-batch production from glucose and fructose as a substrate. The mathematical model that governs the process consists of six differential equations and is highly nonlinear. The proposed strategy uses the Fourier trigonometric basis and normalized orthogonal polynomials for substrate feeding rate parameterization. Then, evolutionary algorithms and gradient methods are combined to search parameters that generate the best control action. This parameterization methodology requires a minimum number of parameters to optimize. Also, the continuous and differentiable nature of the optimal profile enables its direct implementation in the physical process, eliminating the necessity for filtering or smoothing it. In addition, they are ideal for bioprocesses, in which it is preferable to avoid abrupt changes in the operating modes of the process to promote cell growth. As a result, using only 3 parameters, a 3.5% increase in ethanol production was achieved, while the reference uses at least 10 parameters and provides a stepped feed profile. The simulations have yielded promising results, making this proposal an alternative with excellent potential for process optimization.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NONLINEAR SYSTEM
dc.subject
FOURIER SERIES
dc.subject
OPTIMAL CONTROL
dc.subject
EVOLUTIONARY ALGORITHMS
dc.subject
BIOETHANOL PRODUCTION
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Bioethanol production optimization by direct numerical methods and evolutionary algorithms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-17T12:40:50Z
dc.journal.volume
22
dc.journal.number
3
dc.journal.pagination
259-265
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Fernández Puchol, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina
dc.description.fil
Fil: Pantano, Maria Nadia. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.description.fil
Fil: Groff, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina
dc.description.fil
Fil: Gil, Rocio Mariel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.description.fil
Fil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
dc.journal.title
IEEE Latin America Transactions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8307
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2024.10431425
Archivos asociados