Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A synthesis of evidence for policy from behavioural science during COVID-19

Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; Ellemers, Naomi; Cichocka, Aleksandra; Douglas, Karen M.; Rand, David G.; van der Linden, Sander; Cikara, Mina; Finkel, Eli J.; Druckman, James N.; Wohl, Michael J. A.; Petty, Richard E.; Tucker, Joshua A.; Shariff, Azim; Gelfand, Michele; Packer, Dominic; Jetten, Jolanda; Van Lange, Paul A. M.; Pennycook, Gordon; Peters, Ellen; Navajas Ahumada, Joaquin MarianoIcon ; Papa, Francesca; Galizzi, Matteo M.; Milkman, Katherine L.; Petrović, Marija; Van Bavel, Jay J.; Willer, Robb
Fecha de publicación: 01/2024
Editorial: Nature Publishing Group
Revista: Nature
ISSN: 0028-0836
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Psicología; Neurociencias

Resumen

Scientifc evidence regularly guides policy decisions1 , with behavioural science increasingly part of this process2 . In April 2020, an infuential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to eforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams fnding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy efectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed efects and there were no efects for highlighting individual benefts or protecting others. No available evidence existed to assess any distinct diferences in efects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientifc evidence in policy formulation and prioritization.
Palabras clave: Policy recommendations , Public policy , Behavioural science , COVID-19
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.650Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/240189
DOI: http://dx.doi.org/10.1038/s41586-023-06840-9
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Ruggeri, Kai; Stock, Friederike; Haslam, S. Alexander; Capraro, Valerio; Boggio, Paulo; et al.; A synthesis of evidence for policy from behavioural science during COVID-19; Nature Publishing Group; Nature; 625; 7993; 1-2024; 134-147
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES