Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg)

Nyssen, Olga P.; Pratesi, Pietro; Spínola, Miguel A.; Jonaitis, Laimas; Pérez Aísa, Ángeles; Vaira, Dino; Saracino, Ilaria Maria; Pavoni, Matteo; Fiorini, Giulia; Tepes, Bojan; Bordin, Dmitry S.; Voynovan, Irina; Lanas, Ángel; Martínez Domínguez, Samuel J.; Alfaro, Enrique; Bujanda, Luis; Pabón Carrasco, Manuel; Hernández, Luis; Gasbarrini, Antonio; Kupcinskas, Juozas; Lerang, Frode; Smith, Sinead M.; Gridnyev, Oleksiy; Leja, Marcis; Cano Català, Anna; Parra, Pablo; Mégraud, Francis; O’Morain, Colm; Ortega, Guillermo JoséIcon ; Gisbert, Javier P.
Fecha de publicación: 06/2023
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Antibiotics
e-ISSN: 2079-6382
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Gastroenterología y Hepatología

Resumen

The segmentation of patients into homogeneous groups could help to improve eradication therapy effectiveness. Our aim was to determine the most important treatment strategies used in Europe, to evaluate first-line treatment effectiveness according to year and country. Data collection: All first-line empirical treatments registered at AEGREDCap in the European Registry on Helicobacter pylori management (Hp-EuReg) from June 2013 to November 2022. A Boruta method determined the “most important” variables related to treatment effectiveness. Data clustering was performed through multi-correspondence analysis of the resulting six most important variables for every year in the 2013–2022 period. Based on 35,852 patients, the average overall treatment effectiveness increased from 87% in 2013 to 93% in 2022. The lowest effectiveness (80%) was obtained in 2016 in cluster #3 encompassing Slovenia, Lithuania, Latvia, and Russia, treated with 7-day triple therapy with amoxicillin–clarithromycin (92% of cases). The highest effectiveness (95%) was achieved in 2022, mostly in Spain (81%), with the bismuth–quadruple therapy, including the single-capsule (64%) and the concomitant treatment with clarithromycin–amoxicillin–metronidazole/tinidazole (34%) with 10 (69%) and 14 (32%) days. Cluster analysis allowed for the identification of patients in homogeneous treatment groups assessing the effectiveness of different first-line treatments depending on therapy scheme, adherence, country, and prescription year.
Palabras clave: Helicobacter pylori , clustering; , phenotyping; , machine learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.292Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/240172
DOI: http://dx.doi.org/10.3390/antibiotics12091427
URL: https://www.mdpi.com/2079-6382/12/9/1427
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Nyssen, Olga P.; Pratesi, Pietro; Spínola, Miguel A.; Jonaitis, Laimas; Pérez Aísa, Ángeles; et al.; Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg); Multidisciplinary Digital Publishing Institute; Antibiotics; 12; 9; 6-2023; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES