Artículo
Ensemble based methods for leapfrog integration in the simplified parameterizations, primitive‐equation dynamics model
Fecha de publicación:
02/2023
Editorial:
John Wiley & Sons Ltd
Revista:
Quarterly Journal of the Royal Meteorological Society
ISSN:
0035-9009
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents efficient and practical implementations of sequential dataassimilation methods for the Simplified Parameterizations, primitive-EquationDYnamics (SPEEDY) Model, a well-known numerical model, into the dataassimilation community for climate prediction. In the SPEEDY model, the timeevolution of dynamics is performed via the second-order Leapfrog integrationscheme; this time integrator relies on two steps: the position and the velocity. Thecomputational implementation of SPEEDY blends the time integrator and thespatial discretization of dynamics to accelerate algebraic computations. Thus,there is no access to the right-hand side function of the ordinary differentialequations governing the time evolution of model dynamics. Consequently, theSPEEDY model is often treated as a black box wherein positions and velocitieswork as inputs and outputs. Since observations in operational data assimilationonly match position states, we can exploit augmented vector states to propagateanalysis innovations frompositions to velocities. For this purpose, we formulatethree variants of ensemble-based filters and perform numerical experiments toassess their accuracies.We consider two scenarios for the experiments: an idealcase wherein positions and velocities can be observed and a more realistic onewherein measurements are only accessible for position states. Besides, we discussthe effects of the ensemble size on the accuracies of our formulations and,even more, the typical case in which velocities are not updated across assimilationsteps. The results reveal that all filter formulations? accuracies remainthe same in terms of Root-Mean-Square-Error by neglecting observations fromvelocities (a realistic scenario) even for cases wherein the number of measurementsdecreases to 6% of model components. Furthermore, for all discussedfilter implementations, the propagation of analysis increments from positionto velocities improves up to 100% the performance of filter implementationswherein velocities are not updated, a typical operational scenario.
Palabras clave:
ATMOSPHERIC GENERAL CIRCULATION MODEL
,
ENKF
,
LEAPFROG INTEGRATOR
,
LETKF
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Citación
Nino Ruiz, Elias D.; Consuegra Ortega, Randy S.; Lucini, María Magdalena; Ensemble based methods for leapfrog integration in the simplified parameterizations, primitive‐equation dynamics model; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 149; 751; 2-2023; 573-587
Compartir
Altmétricas