Mostrar el registro sencillo del ítem

dc.contributor.author
González, Martín Germán  
dc.contributor.author
Vera, Matías Alejandro  
dc.contributor.author
Dreszman, Alan  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.date.available
2024-07-15T14:58:16Z  
dc.date.issued
2024-07  
dc.identifier.citation
González, Martín Germán; Vera, Matías Alejandro; Dreszman, Alan; Rey Vega, Leonardo Javier; Diffusion assisted image reconstruction in optoacoustic tomography; Elsevier; Optics And Lasers In Engineering; 178; 7-2024; 1-11  
dc.identifier.issn
0143-8166  
dc.identifier.uri
http://hdl.handle.net/11336/239954  
dc.description.abstract
In this paper we consider the problem of acoustic inversion in the context of the optoacoustic tomography image reconstruction problem. By leveraging the ability of the recently proposed diffusion models for image generative tasks among others, we devise an image reconstruction architecture based on a conditional diffusion process. The scheme makes use of an initial image reconstruction, which is preprocessed by an autoencoder to generate an adequate representation. This representation is used as conditional information in a generative diffusion process. Although the computational requirements for training and implementing the architecture are not low, several design choices discussed in the work were made to keep them manageable. Numerical results show that the conditional information allows to properly bias the parameters of the diffusion model to improve the quality of the initial reconstructed image, eliminating artifacts or even reconstructing finer details of the ground-truth image that are not recoverable by the initial image reconstruction method. We also tested the proposal under experimental conditions and the obtained results were in line with those corresponding to the numerical simulations. Improvements in image quality up to 17% in terms of peak signal-to-noise ratio were observed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PHOTOACUSTIC  
dc.subject
DEEP LEARNING  
dc.subject
DIFFUSIONS  
dc.subject
TOMOGRAPHY  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Diffusion assisted image reconstruction in optoacoustic tomography  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-15T14:07:29Z  
dc.journal.volume
178  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: González, Martín Germán. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Vera, Matías Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.description.fil
Fil: Dreszman, Alan. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.journal.title
Optics And Lasers In Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0143816624002215?dgcid=coauthor  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.optlaseng.2024.108242