Mostrar el registro sencillo del ítem
dc.contributor.author
González, Martín Germán
dc.contributor.author
Vera, Matías Alejandro
dc.contributor.author
Dreszman, Alan
dc.contributor.author
Rey Vega, Leonardo Javier
dc.date.available
2024-07-15T14:58:16Z
dc.date.issued
2024-07
dc.identifier.citation
González, Martín Germán; Vera, Matías Alejandro; Dreszman, Alan; Rey Vega, Leonardo Javier; Diffusion assisted image reconstruction in optoacoustic tomography; Elsevier; Optics And Lasers In Engineering; 178; 7-2024; 1-11
dc.identifier.issn
0143-8166
dc.identifier.uri
http://hdl.handle.net/11336/239954
dc.description.abstract
In this paper we consider the problem of acoustic inversion in the context of the optoacoustic tomography image reconstruction problem. By leveraging the ability of the recently proposed diffusion models for image generative tasks among others, we devise an image reconstruction architecture based on a conditional diffusion process. The scheme makes use of an initial image reconstruction, which is preprocessed by an autoencoder to generate an adequate representation. This representation is used as conditional information in a generative diffusion process. Although the computational requirements for training and implementing the architecture are not low, several design choices discussed in the work were made to keep them manageable. Numerical results show that the conditional information allows to properly bias the parameters of the diffusion model to improve the quality of the initial reconstructed image, eliminating artifacts or even reconstructing finer details of the ground-truth image that are not recoverable by the initial image reconstruction method. We also tested the proposal under experimental conditions and the obtained results were in line with those corresponding to the numerical simulations. Improvements in image quality up to 17% in terms of peak signal-to-noise ratio were observed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PHOTOACUSTIC
dc.subject
DEEP LEARNING
dc.subject
DIFFUSIONS
dc.subject
TOMOGRAPHY
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Diffusion assisted image reconstruction in optoacoustic tomography
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-15T14:07:29Z
dc.journal.volume
178
dc.journal.pagination
1-11
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: González, Martín Germán. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Vera, Matías Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.description.fil
Fil: Dreszman, Alan. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.journal.title
Optics And Lasers In Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0143816624002215?dgcid=coauthor
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.optlaseng.2024.108242
Archivos asociados