Mostrar el registro sencillo del ítem

dc.contributor.author
Maya, Juan Augusto  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.author
Lopez Tonellotto, Mariana Andrea  
dc.date.available
2024-07-15T14:29:14Z  
dc.date.issued
2024-01  
dc.identifier.citation
Maya, Juan Augusto; Rey Vega, Leonardo Javier; Lopez Tonellotto, Mariana Andrea; An Exponentially-Tight Approximate Factorization of the Joint PDF of Statistical Dependent Measurements in Wireless Sensor Networks; Institute of Electrical and Electronics Engineers; IEEE Open Journal of the Communications Society; 5; 1-2024; 221-237  
dc.identifier.issn
2644-125X  
dc.identifier.uri
http://hdl.handle.net/11336/239943  
dc.description.abstract
We consider the distributed detection problem of a temporally correlated random radio source signal using a wireless sensor network capable of measuring the energy of the received signals. It is well-known that optimal tests in the Neyman-Pearson setting are based on likelihood ratio tests (LRT), which, in this set-up, evaluate the quotient between the probability density functions (PDF) of the measurements when the source signal is present and absent. When the source is present, the computation of the joint PDF of the energy measurements at the nodes is a challenging problem. This is due to the statistical dependence introduced to the received signals by the propagation through fading channels of the radio signal emitted by the source. We deal with this problem using the characteristic function of the (intractable) joint PDF, and proposing an approximation to it. We derive bounds for the approximation error in two wireless propagation scenarios, slow and fast fading, and show that the proposed approximation is exponentially tight with the number of nodes when the time-bandwidth product is sufficiently high. The approximation is used as a substitute of the exact joint PDF for building an approximate LRT, which performs better than other well-known detectors, as verified by Monte Carlo simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CORRELATION  
dc.subject
DISTRIBUTED DETECTION  
dc.subject
ENERGY MEASUREMENT  
dc.subject
FADING CHANNELS  
dc.subject
JOINT PDF FACTORIZATION  
dc.subject
LIGHT RAIL SYSTEMS  
dc.subject
PROBABILITY DENSITY FUNCTION  
dc.subject
SENSORS  
dc.subject
STATISTICALLY DEPENDENT OBSERVATIONS  
dc.subject
WIRELESS SENSOR NETWORKS  
dc.subject.classification
Telecomunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An Exponentially-Tight Approximate Factorization of the Joint PDF of Statistical Dependent Measurements in Wireless Sensor Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-15T14:09:24Z  
dc.journal.volume
5  
dc.journal.pagination
221-237  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.description.fil
Fil: Lopez Tonellotto, Mariana Andrea. University of Klagenfurt; Austria  
dc.journal.title
IEEE Open Journal of the Communications Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/OJCOMS.2023.3332259