Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bispectrum-based features classification for myoelectric control

Orosco, Eugenio ConradoIcon ; López Celani, Natalia MartinaIcon ; Di Sciascio, Fernando Agustín
Fecha de publicación: 03/2013
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Surface electromyographic signals provide useful information about motion intentionality. Therefore, they are a suitable reference signal for control purposes. A continuous classification scheme of five upper limb movements applied to a myoelectric control of a robotic arm is presented. This classification is based on features extracted from the bispectrum of four EMG signal channels. Among several bispectrum estimators, this paper is focused on arithmetic mean, median, and trimmed mean estimators, and their ensemble average versions. All bispectrum estimators have been evaluated in terms of accuracy, robustness against outliers, and computational time. The median bispectrum estimator shows low variance and high robustness properties. Two feature reduction methods for the complex bispectrum matrix are proposed. The first one estimates the three classic means (arithmetic, harmonic, and geometric means) from the module of the bispectrum matrix, and the second one estimates the same three means from the square of the real part of the bispectrum matrix. A two-layer feedforward network for movement's classification and a dedicated system to achieve the myoelectric control of a robotic arm were used. It was found that the classification performance in real-time is similar to those obtained off-line by other authors, and that all volunteers in the practical application successfully completed the control task.
Palabras clave: Emg , Robust Bispectrum , Continuous Classification , Myoelectric Control
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.570Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/23954
URL: http://www.sciencedirect.com/science/article/pii/S1746809412000900
DOI: http://dx.doi.org/10.1016/j.bspc.2012.08.008
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Orosco, Eugenio Conrado; López Celani, Natalia Martina; Di Sciascio, Fernando Agustín; Bispectrum-based features classification for myoelectric control; Elsevier; Biomedical Signal Processing and Control; 8; 3; 3-2013; 153-168
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES