Mostrar el registro sencillo del ítem
dc.contributor.author
Chelaliche, Anibal Sebastian
dc.contributor.author
Benitez, Silvana Florencia
dc.contributor.author
Alvarenga, Adriana Elizabet
dc.contributor.author
Zapata, Pedro Dario
dc.contributor.author
Fonseca, Maria Isabel
dc.date.available
2024-07-10T11:34:40Z
dc.date.issued
2024-06
dc.identifier.citation
Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel; A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment; Elsevier; Environmental Nanotechnology, Monitoring & Management; 22; 6-2024; 1-46
dc.identifier.issn
2215-1532
dc.identifier.uri
http://hdl.handle.net/11336/239417
dc.description.abstract
In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIOREMEDIATION
dc.subject
PERSISTENT ORGANIC POLLUTANT
dc.subject
UPSCALIG
dc.subject
METABOLISM
dc.subject
PERSISTENT ORGANIC POLLUTANT
dc.subject.classification
Biotecnología Medioambiental
dc.subject.classification
Biotecnología del Medio Ambiente
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-08T10:06:07Z
dc.journal.volume
22
dc.journal.pagination
1-46
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Chelaliche, Anibal Sebastian. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.description.fil
Fil: Benitez, Silvana Florencia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.description.fil
Fil: Alvarenga, Adriana Elizabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina
dc.description.fil
Fil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina
dc.description.fil
Fil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.journal.title
Environmental Nanotechnology, Monitoring & Management
dc.rights.embargoDate
2024-12-10
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221515322400062X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enmm.2024.100974
Archivos asociados