Mostrar el registro sencillo del ítem

dc.contributor.author
Chelaliche, Anibal Sebastian  
dc.contributor.author
Benitez, Silvana Florencia  
dc.contributor.author
Alvarenga, Adriana Elizabet  
dc.contributor.author
Zapata, Pedro Dario  
dc.contributor.author
Fonseca, Maria Isabel  
dc.date.available
2024-07-10T11:34:40Z  
dc.date.issued
2024-06  
dc.identifier.citation
Chelaliche, Anibal Sebastian; Benitez, Silvana Florencia; Alvarenga, Adriana Elizabet; Zapata, Pedro Dario; Fonseca, Maria Isabel; A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment; Elsevier; Environmental Nanotechnology, Monitoring & Management; 22; 6-2024; 1-46  
dc.identifier.issn
2215-1532  
dc.identifier.uri
http://hdl.handle.net/11336/239417  
dc.description.abstract
In the last decades, there has been a growing concern regarding the remediation andrecovery of polychlorinated biphenyls (PCBs) contaminated sites. The technologies traditionallyused are often energy-intensive, resource-heavy, and highly disruptive to the environments beingtreated. In this context, mycoremediation has emerged as a highly sought-after alternative due tothe efficiency of certain fungal strains in achieving high removal percentages. This review providesan overview of mycoremediation strategies for PCB bioremediation. We begin by outlining theecotoxicological challenges posed by PCB usage and traditional methods employed forremediating contaminated areas. Secondly, we present different approaches to mycoremediationof PCBs. The use of native PCB-degrading fungi shows that some strains belonging to thePenicillium, Fusarium, and Scedosporium genera are capable of removing over 70% of differentPCBs congeners. Alternatively, we discuss using white rot fungi (WRF) due to their potential intransforming PCBs and associated metabolites. Strains belonging to this group, such as Pleurotuspulmonarius, can attain PCBs removal rates above 90% with a 10.27% reduction in toxicity.Additionally, cases demonstrating the application of WRF in long-term polluted soil and water arepresented as field examples. A trickle bed pilot-scale bioreactor approach using Pleurotusostreatus obtained an average PCBs removal of 89 ± 9% for contaminated groundwater. Similarly,microcosm experiments using P. ostreatus and Irpex lacteus removed up to 50.5% and 41.3% ofPCBs content in long-term contaminated soils, respectively. We also highlight the role ofextracellular ligninolytic enzymes, such as lacasses, lignin peroxidases, manganese peroxidase,manganese-independent peroxidase, and internal oxidoreductases in the PCBs metabolismcarried out by WRF. Finally, we conclude with a series of factors to consider when implementingthese techniques for remediating polluted sites, including up-scaling, current regulations, andcombination with other remediation techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOREMEDIATION  
dc.subject
PERSISTENT ORGANIC POLLUTANT  
dc.subject
UPSCALIG  
dc.subject
METABOLISM  
dc.subject
PERSISTENT ORGANIC POLLUTANT  
dc.subject.classification
Biotecnología Medioambiental  
dc.subject.classification
Biotecnología del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A comprehensive review on the application of mycoremediation in polychlorinated biphenyls treatment  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-08T10:06:07Z  
dc.journal.volume
22  
dc.journal.pagination
1-46  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Chelaliche, Anibal Sebastian. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.description.fil
Fil: Benitez, Silvana Florencia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.description.fil
Fil: Alvarenga, Adriana Elizabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina  
dc.description.fil
Fil: Zapata, Pedro Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina  
dc.description.fil
Fil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.journal.title
Environmental Nanotechnology, Monitoring & Management  
dc.rights.embargoDate
2024-12-10  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S221515322400062X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enmm.2024.100974