Mostrar el registro sencillo del ítem

dc.contributor.author
Severini, Alan David  
dc.contributor.author
Alvarez Prado, Santiago  
dc.contributor.author
Otegui, Maria Elena  
dc.contributor.author
Kavanová, Monika  
dc.contributor.author
Vega, Claudia Rosa Cecilia  
dc.contributor.author
Zuil, Sebastian  
dc.contributor.author
Ceretta, Sergio  
dc.contributor.author
Acreche, Martin Moises  
dc.contributor.author
Amarilla, Fidencia  
dc.contributor.author
Cicchino, Mariano Andrés  
dc.contributor.author
Fernández Long, María Elena  
dc.contributor.author
Crespo, Aníbal  
dc.contributor.author
Serrago, Roman Augusto  
dc.contributor.author
Miralles, Daniel Julio  
dc.date.available
2024-07-10T10:51:36Z  
dc.date.issued
2024-01  
dc.identifier.citation
Severini, Alan David; Alvarez Prado, Santiago; Otegui, Maria Elena; Kavanová, Monika; Vega, Claudia Rosa Cecilia; et al.; CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone; Oxford University Press; in silico Plants; 6; 1; 1-2024; 1-19  
dc.identifier.issn
2517-5025  
dc.identifier.uri
http://hdl.handle.net/11336/239397  
dc.description.abstract
Accurate prediction of phenology is the most critical aspect for the development of models aimed at estimating seed yield, particularly in species that exhibit variable sensitivity to environmental factors throughout the cycle and among genotypes. With this purpose, we evaluated the phenology of 34 soybean varieties in feld experiments located in Argentina, Uruguay and Paraguay. Experiments covered a broad range of maturity group (MG)s (2.2–6.8), sowing dates (SDs) (from spring to summer) and latitude range (24.9–35.6 °S), thus ensuring a wide range of thermo-photoperiodic conditions during the growing season. Based on the observed data, daily time-step models were developed and tested, frst for each genotype, and then across MGs. We identifed base temperatures specifc for diferent developmental phases and an extra parameter for calculating the photoperiod efect afer the R1 stage (fowering). Also, an optimum photoperiod length for each MG was found. Model selection showed that the determinants of phenology across MGs were mainly afecting the duration of vegetative and early reproductive phases. Even so, early phases of development were beter predicted than later ones, particularly in locations with cool growing seasons, where the model tended to overestimate their duration. In summary, we have constructed a soybean phenology model that simulates phenology accurately across various geographic locations and sowing dates. The model’s process-based approach has resulted in root mean square errors ranging from 5.8 to 9.5 days for diferent developmental stages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bayesian  
dc.subject
Decision-making  
dc.subject
Dynamic model  
dc.subject
Model development  
dc.subject
Phenology  
dc.subject
Soybean  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-08T10:18:45Z  
dc.journal.volume
6  
dc.journal.number
1  
dc.journal.pagination
1-19  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Severini, Alan David. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Kavanová, Monika. Instituto Nacional de Investigacion Agropecuaria;  
dc.description.fil
Fil: Vega, Claudia Rosa Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Zuil, Sebastian. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina  
dc.description.fil
Fil: Ceretta, Sergio. Estacion Experimental la Estanzuela ; Instituto Nacional de Investigacion Agropecuaria;  
dc.description.fil
Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Salta-Jujuy. Estación Experimental Agropecuaria Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Amarilla, Fidencia. Instituto Paraguayo de Tecnología Agraria; Paraguay  
dc.description.fil
Fil: Cicchino, Mariano Andrés. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Cuenca del Salado.; Argentina  
dc.description.fil
Fil: Fernández Long, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Crespo, Aníbal. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Serrago, Roman Augusto. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Miralles, Daniel Julio. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
in silico Plants  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/insilicoplants/article/doi/10.1093/insilicoplants/diae005/7667638  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/insilicoplants/diae005