Mostrar el registro sencillo del ítem

dc.contributor.author
Gonzalez Solveyra, Estefania  
dc.contributor.author
Pérez Sirkin, Yamila Anahí  
dc.contributor.author
Tagliazucchi, Mario Eugenio  
dc.contributor.author
Szleifer, Igal  
dc.date.available
2024-07-05T10:23:44Z  
dc.date.issued
2024-04  
dc.identifier.citation
Gonzalez Solveyra, Estefania; Pérez Sirkin, Yamila Anahí; Tagliazucchi, Mario Eugenio; Szleifer, Igal; Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores; American Chemical Society; ACS Nano; 18; 15; 4-2024; 10427-10438  
dc.identifier.issn
1936-0851  
dc.identifier.uri
http://hdl.handle.net/11336/239133  
dc.description.abstract
Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid–base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, β-lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH-responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NANOPORE  
dc.subject
PROTEIN  
dc.subject
TRANSLOCATION  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-04T11:33:54Z  
dc.journal.volume
18  
dc.journal.number
15  
dc.journal.pagination
10427-10438  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gonzalez Solveyra, Estefania. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pérez Sirkin, Yamila Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Szleifer, Igal. Northwestern University; Estados Unidos  
dc.journal.title
ACS Nano  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsnano.3c11318  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsnano.3c11318