Artículo
Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns
Fecha de publicación:
03/2023
Editorial:
American Institute of Physics
Revista:
Chaos
ISSN:
1054-1500
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea–Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen–Shannon divergence, besides the fact that it verifies some interesting formal properties.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Mateos, Diego Martín; Riveaud, Leonardo Esteban; Lamberti, Pedro Walter; Rao–Burbea centroids applied to the statistical characterization of time series and images through ordinal patterns; American Institute of Physics; Chaos; 33; 3; 3-2023; 1-11
Compartir
Altmétricas